Skip to main content
Log in

Development and characterization of nickel accumulating mutants of Aspergillus nidulans

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Stable mutants of Aspergillus nidulans, resistant to 1 mM Ni were developed by step-by-step repeated culturing of the fungus on the medium containing increasing concentrations of nickel chloride. Characterization of mutants could differentiate them into two categories NiR I and NiR II. Each category of mutants exhibited alterations in growth, conidial germination and melanin secretion both in Ni-free and Ni-containing media. NiR II mutants were little slow in growth with sparse mycelia and conidiation but showed high melanin secretion and higher Ni-uptake in comparison to NiR I mutant. Studies involving metabolic and translational inhibitors could prove that Ni-accumulation was biphasic. The initial energy independent surface accumulation was found to be followed by energy dependent intarcellular uptake. Increase in the concentration of the metal in the medium or the time of exposure did not proportionately increase the metal uptake by the mutants. Ni-uptake followed Michaelis-Menton saturation kinetics, which was enhanced under optimum pH of 6.5–7.5 and reduced complexity of the medium due to free availability of ions. Resistance to Ni was found to be constitutive in NiRI mutant, and could be induced in NiRII mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refernces

  1. Hausinger RP (1987) Nickel utilization by microorganisms. Microbiol Rev 51:22–42

    PubMed  CAS  Google Scholar 

  2. Babich H & Stotzky G (1982) Nickel toxicity to microbes: Effect of pH and implications for acid rain. Environ Res 29: 335–350

    Article  PubMed  CAS  Google Scholar 

  3. Puckett KJ, Nieboer E, Gorzynski MJ & Richardson DHS (1979) The uptake of metal ions by lichens: A modified ion-exchange process. New Phytol 72: 329

    Article  Google Scholar 

  4. Norseth T & Piscator M (1979) Nickel. In: Handbook on the toxicology of metals (Friberg L, Nordberg GF & Vouk VB eds.) Elsevier/North-Holland Biomedical Press, NY, 541p

    Google Scholar 

  5. Tomsett AB (1994) Genetics and molecular biology of metal tolerance in fungi. In: Stress Tolerance of Fungi (Jennines DH ed). Marcel Dekker INC NY, pp 69–95

  6. Malik A (2004) Metal bioremediation through growing cell. Environ Int 30: 261–278

    Article  PubMed  CAS  Google Scholar 

  7. Tobin JM, White C & Gadd GM (1994) Metal accumulation by fungi: Applications in environmental biotechnology. J Industrial Microbiol 13:126–130

    Article  CAS  Google Scholar 

  8. Coulibaly L, Gourene G & Agathos NS (2003) Utilization of fungi for biotreatment of raw waste waters. Africal Journal of Biotechnology 2:620–630

    CAS  Google Scholar 

  9. Saxena P, Mathur N & Bhattacharya AK (2006) Nickel tolerance and accumulation by filamentous fungi from sludge of metal finishing industry. Geomicorbiology Journal 23: 330–340

    Google Scholar 

  10. Verma S & Sihna U (1973) Inhibition of growth by amino acid analogues in Aspergillus nidulans. Beitr Biol Pflanzen 49:47–58

    Google Scholar 

  11. Venkateswerlu G & Stotzky G (1986) Copper and cobalt alter the cell wall composition of Cunninghamella blakesleeana. Can J Microbiol 32:654–662

    Article  PubMed  CAS  Google Scholar 

  12. Kermasha S, Pellerin F, Rovel B, Goetghebeur M & Metche M (1993) Purification and characterization of Copper-metallothioneins from Aspergillus niger. 57:1420–1423

    CAS  Google Scholar 

  13. Laemmli UK (1970) Clevage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  14. Joho M, Inouhe M, Tohoyama H & Murayama T (1995) Nickel resistance mechanisms in yeast and other fungi. Jour Industr Microbiol Biotechnol 14:164–168

    Article  CAS  Google Scholar 

  15. MacDiarmid CW & Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport-system confers resistance to aluminium ion. J Biol chem 273: 1727–1732

    Article  PubMed  CAS  Google Scholar 

  16. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  17. Gadd GM (1992) Heavy metal pollutants: Environmental and biotechnological aspects. In: Encyclopedia of Microbiology 2:351–360

    Google Scholar 

  18. Saxena D, Joshi N & Srivastava S (2002) Mechanism of copper resistance in copper mine isolate Pseudomonas putida strain S4. Current microbiology 45:410–414

    Article  PubMed  CAS  Google Scholar 

  19. Mohan PM & Sastry KS (1983) Interrelationships in trace-element metabolism in metal toxicities in nickel-resistant strains of Neurospora crassa. Biochem J 212:205–210

    Google Scholar 

  20. Subramanyam C, Venkateswerlu G & Rao SLN (1983) Cell wall composition of Neurospora crassa under conditions of copper toxicity. Appl environ microbiol 46:585–590

    PubMed  CAS  Google Scholar 

  21. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:1–35

    Article  Google Scholar 

  22. Cooley RN, Haslock HR & Tomsett AB (1986) Isolation and characterization of cadmium-resistant mutants of Aspergillus nidulans. Curr Microbiol 13:265–268

    Article  CAS  Google Scholar 

  23. Phelan A, Thurman DA & Tomsett AB (1990) The isolation and characterization of copper-resistant mutants of Aspergillus nidulans. Curr Microbiol 21:255–260

    Article  CAS  Google Scholar 

  24. Muzzarelli RAA, Bregani F & Sigon F (1986) Chelating abilities of aminoacid glucans and sugar acid glucons derived from clutosan. In: Immobilisation of Ions by Bio-sorption (Eccles H & Hunt S eds). Ellis Horwood Chichester, pp 173–1082

  25. Siegel SM, Galun M & Hifgel BZ (1990) Filamentous fungi as metal biosorbents: A review. Water, Air, and Soil Pollution 53:335–344

    Article  CAS  Google Scholar 

  26. Germann VA & Lerch K (1987) Copper accumulation in the cell-wall deficient slime variant of Neurospora crassa. Biochem J 245:479–486

    PubMed  CAS  Google Scholar 

  27. Lin CM, Crawford BF & Kosman DJ (1993) Distribution of 64Cu in Saccharomyces cerevisiae: Cellular locale and metabolism. J Gen Microbiol 139:1605–1616

    PubMed  CAS  Google Scholar 

  28. Mohan PM & Sastry KS (1984) Cobalt transport in nickel resistant strains of Neurospora crassa. Curr Microbiol 10:125

    Article  CAS  Google Scholar 

  29. Rama Rao VSKV, Wilson CH & Maruthi Mohan P (1997) Zn resistance in Neurospora Crassa. Biometals 10: 147–156

    Article  Google Scholar 

  30. Gadd GM & White C (1985) Copper uptake by Penicillium ochro-choloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts J Gen Microbiol 131:1875–1879

    CAS  Google Scholar 

  31. EL-Morsy SM (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia 96:1183–1189

    CAS  Google Scholar 

  32. Gadd GM & White C (1992) Removal of thorium from simulated acid process streams by fungal biomass: Potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol 55:39–44

    Article  CAS  Google Scholar 

  33. Hughes MN & Poole RK (1991) Metal speciation and microbial growth-the hard (and soft) facts. J Gen Microbiol 137:725–734

    CAS  Google Scholar 

  34. Gadd GM & White C (1989) Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In: Metal-Microbe Interactions (Poole RK & Gadd GM eds). IRL Press Oxford, pp 19–38

    Google Scholar 

  35. Zucconi L, Ripa C, Alianiello F Benedetti A & Onofri S (2003) Lead resistance, sorption and accumulation in a Paecilomyces lilacinus strain. Biology and Fertility of Soils 37:17–22

    CAS  Google Scholar 

  36. Starling AP & Ross IS (1990) Uptake of manganese by Penicillium notatum. Microbios 63:93–100

    PubMed  CAS  Google Scholar 

  37. Ross IS (1994) Membrane transport processes and response to exposure to heavy metals. In: Stress Tolerance of Fungi (Jennings DH ed). Marcel Dekker Inc NY, pp 97–125

    Google Scholar 

  38. Gharieb MM & Gadd GM (2004) The Kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vaculozation response to high concentrations. Mycological Research 108:1415–1422

    Article  PubMed  CAS  Google Scholar 

  39. Mago R & Srivastava S (1994) Uptake of zinc in Pseudomonas sp. Strain UDG26. Appl Env Microbiol 60:2367–2370

    CAS  Google Scholar 

  40. Mehra RK & Winge DR (1991) Metal ion resistance in fungi: Molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  PubMed  CAS  Google Scholar 

  41. Joho M, Inouhe M, Tohoyama H & Marayama T (1990) A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae. FEMS Microbiol Lett 66: 333–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushplata Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, P., Srivastava, S. Development and characterization of nickel accumulating mutants of Aspergillus nidulans . Indian J Microbiol 47, 241–250 (2007). https://doi.org/10.1007/s12088-007-0045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-007-0045-3

Keywords

Navigation