Skip to main content
Log in

Effects of plant evolution on nutrient cycling couple aboveground and belowground processes

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Plant strategies for nutrient acquisition and recycling are key components of ecosystem functioning. How the evolution of such strategies modifies ecosystem functioning and services is still not well understood. In the present work, we aim at understanding how the evolution of different phenotypic traits link aboveground and belowground processes, thereby affecting the functioning of the ecosystem at different scales and in different realms. Using a simple model, we follow the dynamics of a limiting nutrient inside an ecosystem. Considering trade-offs between aboveground and belowground functional traits, we study the effects of the evolution of such strategies on ecosystem properties (amount of mineral nutrient, total plant biomass, dead organic matter, and primary productivity) and whether such properties are maximized. Our results show that when evolution leads to a stable outcome, it minimizes the quantity of nutrient available (following Tilman’s R* rule). We also show that considering the evolution of aboveground and belowground functional traits simultaneously, total plant biomass and primary productivity are not necessarily maximized through evolution. The coupling of aboveground and belowground processes through evolution may largely diminish predicted standing biomass and productivity (extinction may even occur) and impact the evolutionary resilience (i.e., the return time to previous phenotypic states) of the ecosystem in the face of external disturbances. We show that changes in plant biomass and their effects on evolutionary change can be understood by accounting for the links between nutrient uptake and mineralization, and for indirect effects of nutrient uptake on the amount of detritus in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams PA (2005) “Adaptive dynamics” vs. “adaptive dynamics”. J Evol Biol 18:1162–1165. doi:10.1111/j.1420-9101.2004.00843.x

    Article  CAS  PubMed  Google Scholar 

  • Barot S, Bornhofen S, Boudsocq S et al (2015) Evolution of nutrient acquisition: when space matters. Funct Ecol in press. doi:10.1111/1365-2435.12494

    Google Scholar 

  • Barot S, Bornhofen S, Loeuille N et al (2014) Nutrient enrichment and local competition influence the evolution of plant mineralization strategy: a modelling approach. J Ecol 102:357–366. doi:10.1111/1365-2745.12200

    Article  Google Scholar 

  • Berendse F (1994) Litter decomposability—a neglected component of plant fitness. J Ecol 82:187–190. doi:10.2307/2261398

    Article  Google Scholar 

  • Boudsocq S, Barot S, Loeuille N (2011) Evolution of nutrient acquisition: when adaptation fills the gap between contrasting ecological theories. P R Soc B 278:449–457. doi:10.1098/rspb.2010.1167

    Article  CAS  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Evol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chapin III FS, Matson PA, Vitousek PM (2002) Principles of terrestrial ecosystem ecology. Springer Science & Business Media.

    Google Scholar 

  • Cheng W, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier Inc., pp 31–56

  • de Mazancourt C, Dieckmann U (2004) Trade-off geometries and frequency-dependent selection. Am Nat 164:765–778

    Google Scholar 

  • Denison RF (2012) Darwinian agriculture: how understanding evolution can improve agriculture. Princeton University Press, Princeton, N. J

    Google Scholar 

  • Díaz S, Hodgson JG, Thompson K et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612

    Article  CAS  PubMed  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Eshel I (1983) Evolutionary and continuous stability. J Theor Biol 103:99–111

    Article  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi:10.1016/S0038-0717(03)00123-8

    Article  CAS  Google Scholar 

  • Geritz SAH, Kisdi É, Meszéna G, Metz JAJ (1998) Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57

    Article  Google Scholar 

  • Gersani M, Brown JS, O’Brien EE et al (2001) Tragedy of the commons as a result of root competition. J Ecol 89:660–669. doi:10.1046/j.0022-0477.2001.00609.x

    Article  Google Scholar 

  • Gilman RT, Nuismer SL, Jhwueng D-C (2012) Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature 483:328–330. doi:10.1038/nature10853

    Article  CAS  PubMed  Google Scholar 

  • Gould S, Lewontin R (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. P R Soc B 205:581–598

    Article  CAS  Google Scholar 

  • Gravel D, Guichard F, Loreau M, Mouquet N (2010) Source and sink dynamics in meta-ecosystems. Ecology 91:2172–2184

    Article  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP, Cornelissen JHC, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti- herbivore defence and the decomposition rate of leaves. Oikos 77:489–494

    Article  Google Scholar 

  • Helfield JM, Naiman RJ (2001) Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity. Ecology 82:2403–2409

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Holt RD, Grover J, Tilman D (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am Nat 144:741. doi:10.1086/285705

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisting the Holy Grail. Funct Ecol 16:545–556. doi:10.1046/J.1365-2435.2002.00664.X

    Article  Google Scholar 

  • Loeuille N, Loreau M (2005) Evolutionary emergence of size-structured food webs. P Natl Acad Sci USA 102:5761–5766

    Article  CAS  Google Scholar 

  • Loeuille N, Barot S, Georgelin E et al (2013) Eco-evolutionary dynamics of agricultural networks: implications for sustainable management. Adv Ecol Res 49:339–435. doi:10.1016/B978-0-12-420002-9.00006-8

    Article  Google Scholar 

  • Loeuille N, Leibold MA (2008) Ecological consequences of evolution in plant defenses in a metacommunity. Theor Popul Biol 74:34–45

    Article  CAS  PubMed  Google Scholar 

  • Loeuille N, Loreau M (2004) Nutrient enrichment and food chains: can evolution buffer top-down control? Theor Popul Biol 65:285–298

    Article  PubMed  Google Scholar 

  • Loeuille N, Loreau M, Ferrière R (2002) Consequences of plant-herbivore coevolution on the dynamics and functioning of ecosystems. J Theor Biol 217:369–381

    Article  PubMed  Google Scholar 

  • Lotka AJ (1922) Contribution to the energetics of evolution. P Natl Acad Sci USA 8:147–151

    Article  CAS  Google Scholar 

  • McArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, N. J

    Google Scholar 

  • McNaughton SJ (1979) Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am Nat 113:691–703

    Article  Google Scholar 

  • Metz JAJ, Mylius SD, Diekmann O (2008) When does evolution optimize? Evol Ecol Res 10:629–654

    Google Scholar 

  • Odum HT, Pinkerton RC (1955) Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems. Am Sci 43:331–343

    Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemelä P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261

    Article  Google Scholar 

  • Parvinen K (2005) Evolutionary suicide. Acta Biotheor 53:241–264

    Article  PubMed  Google Scholar 

  • Pianka E (1970) On r-and K-selection. Am Nat 104:592–597

    Article  Google Scholar 

  • Rankin DJ, Bargum K, Kokko H (2007) The tragedy of the commons in evolutionary biology. Trends Ecol Evol 22:643–651

    Article  PubMed  Google Scholar 

  • Reynolds HL, Pacala SW (1993) An analytical treatment of root-to-shoot ratio and plant competition for soil nutrient and light. Am Nat 141:51–70

    Article  CAS  PubMed  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapmann and Hall, London, U.K.

    Google Scholar 

  • Rosenzweig M (1971) The paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(80):385–387

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (1995) Adaptive radiation in sticklebacks: trade-off in feeding performance and growth. Ecology 76:82–90

    Article  Google Scholar 

  • Shipley B, Vile D, Garnier E (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314(80):812–814. doi:10.1126/science.1131344

    Article  CAS  PubMed  Google Scholar 

  • Southwood T (1988) Tactics, strategies and templets. Oikos 52:3–18

    Article  Google Scholar 

  • Tilman DG (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16. doi:10.2307/1939377

    Article  Google Scholar 

  • Tilman DG (1982) Resource competition and community structure. Princeton University Press, Princeton, N. J

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Whitham TG, Young WP, Martinsen GD et al (2003) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559–573

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Zak DR, Tilman DG, Parmenter RR, Rice CW (1994) Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study. Ecology 75:2333–2347

    Article  Google Scholar 

  • Zou K, Thébault E, Lacroix G, Barot S (2016) Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol

Download references

Acknowledgments

The authors are very grateful to Dominique Gravel and Nicolas Gross for their helpful and constructive comments on a previous version of the manuscript. T. Le Mao has been supported by a PhD grant from the French National Institute for Agricultural Research (INRA). The authors also acknowledge the support of CNRS and IRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Loeuille.

Additional information

Nicolas Loeuille and Tiphaine Le Mao equally contributed to this work.

Electronic supplementary material

ESM 1

(DOCX 40 kb)

ESM 2

(DOCX 1743 kb)

ESM 3

(DOCX 1370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loeuille, N., Le Mao, T. & Barot, S. Effects of plant evolution on nutrient cycling couple aboveground and belowground processes. Theor Ecol 10, 117–127 (2017). https://doi.org/10.1007/s12080-016-0315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-016-0315-y

Keywords

Navigation