Skip to main content

Advertisement

Log in

Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys

  • Research article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Diabetic kidney disease is the leading cause of impaired kidney function, albuminuria, and renal replacement therapy (dialysis or transplantation), thus placing a large burden on health-care systems. This urgent event requires us to reveal the molecular mechanism of this disease to develop more efficacious treatment. Herein, we reported single-cell RNA sequencing analyses in kidneys of db/db mouse, an animal model for type 2 diabetes and diabetic kidney disease. We first analyzed the hub genes expressed differentially in the single cell resolution transcriptome map of the kidneys. Then we figured out the communication among the renal and immune cells in the kidneys. Data from this report may provide novel information for better understanding the cell-specific targets involved in the aetiologia of type 2 diabetic kidney disease and for cell communication and signaling between renal cells and immune cells of this complex disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets and computer code produced in this study are available in the following databases: Our scRNA-Seq data: Sequence Read Archive PRJNA749372 (https://www.ncbi.nlm.nih.gov/sra/PRJNA749372). In order to provide scRNA profiles from this study, we have constructed an interactive shiny-app as a web tool for your visit (http://biomamba.com:34038/DKD.data.set/). Referenced scRNA-Seq data: Gene Expression Omnibus GSE107585 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107585). Other original contributions are included in this article, including tables, figures, and supplementary material.

Abbreviations

AGEs:

Advanced glycation end products

ALH:

Ascending loop of Henle

BCAA:

Branched-chain amino acids

CD-IC:

Collecting duct intercalated cell

CD-PC:

Collecting duct principal cell

CR:

Creatinine

DCT:

Distal convoluted tubule

DEGs:

Differentially expressed genes

DLH:

Descending loop of Hence

DKD:

Diabetic kidney disease

DM:

Diabetes mellitus

EERA:

Erythropoietin receptor

EnC:

Endothelial cell

ESKF:

End-stage kidney failure

GO:

Gene ontology

IDF:

International Diabetes Federation

KAP:

Kidney androgen-regulated protein

KEGG:

Kyoto encyclopedia of genes and genomes

Mac:

Macrophage

mtRNA:

Mitochondrial RNA

OPN:

Osteopontin

PCT:

Proximal convoluted tubule

PTCs:

Proximal epithelial tubular cells

RAAS:

Renin–angiotensin–aldosterone system

RSCEP:

Renal stromal cells except PTCs

scRNA-seq:

Single-cell RNA sequencing

SNN:

Shared nearest neighbor

STZ:

Streptozotocin

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

tSNE:

T-distributed stochastic neighbor embedding

UA:

Urinary albuminuria

UAER:

Urinary albumin excretion rate

UMAP:

Uniform manifold approximation and projection

UMI:

Unique molecular identifiers

References

  • Anders HJ, Huber TB, Isermann B, Schiffer M (2018) CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 14(6):361–377

    Article  CAS  PubMed  Google Scholar 

  • Bai M, Chen H, Ding D, Song R, Lin J, Zhang Y, Guo Y, Chen S, Ding G, Zhang Y et al (2019) MicroRNA-214 promotes chronic kidney disease by disrupting mitochondrial oxidative phosphorylation. Kidney Int 95:1389–1404

    Article  CAS  PubMed  Google Scholar 

  • Beale EG, Harvey BJ, Forest C (2007) PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem Biophys 48:89–95

    Article  CAS  PubMed  Google Scholar 

  • Bondeva T, Wolf G (2015) Role of neuropilin-1 in diabetic nephropathy. J Clin Med 4:1293–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd-Shiwarski CR, Shiwarski DJ, Roy A, Namboodiri HN, Nkashama LJ, Xie J, McClain KL, Marciszyn A, Kleyman TR, Tan RJ et al (2017) Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol Biol Cell 229:499–509

    Google Scholar 

  • Crambert G, Geering K (2003) FXYD proteins: new tissue-specific regulators of the ubiquitous Na,K-ATPase. Sci Signal 2003(166):re1–re1. https://doi.org/10.1126/scisignal.1662003re1

    Article  Google Scholar 

  • Crisi GM, Marconi SA, Rockwell GF, Braden GL, Campfield TJ (2009) Immuno-localization of CD44 and osteopontin in developing human kidney. Pediatr Res 65:79–84

    Article  CAS  PubMed  Google Scholar 

  • de Quixano BB, Villena JA, Aranda M, Brils G, Cuevas A, Hespel T, Lekuona H, Súarez C, Tornavaca O, Meseguer A (2017) Kidney androgen-regulated protein (KAP) transgenic mice are protected against high-fat diet induced metabolic syndrome. Sci Rep 7:16102

    Article  PubMed  PubMed Central  Google Scholar 

  • Doshi SM, Friedman AN (2017) Diagnosis and management of Type 2 diabetic kidney disease. Clin J Am Soc Nephrol 12:1366–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Yang YT, Tang G, Jia JS, Zhu N, Yuan WJ (2020) Butyrate alleviates diabetic kidney disease by mediating the miR-7a-5p/P311/TGF-β1 pathway. FASEB J 34:10462–10475

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Akat KM, Sun Z, Zhang W, Schlondorff D, Liu Z, Tuschl T, Lee K, He JC (2019a) Single-Cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol 30:533–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Lee K, Chuang PY, Liu Z, He JC (2019b) Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 308:F287-297

    Article  Google Scholar 

  • Fuchs TC, Hewitt P (2011) Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS J 13:615–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furman BL (2015) Streptozotocin‐induced diabetic models in mice and rats. Curr Protoc Pharmacol. https://doi.org/10.1002/0471141755.ph0547s70

    Article  PubMed  Google Scholar 

  • Jiang NM, Cowan M, Moonah SN, Petri WA Jr (2018) (2018) The impact of systemic inflammation on neurodevelopment. Trends Mol Med 24(9):794–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaleta B (2019) The role of osteopontin in kidney diseases. Inflamm Res 68:93–102

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park CW (2019) Mechanisms of adiponectin action: implication of adiponectin receptor agonism in diabetic kidney disease. Int J Mol Sci 20:1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Huang J, He S, Lu Z, Zhang J, Li X, Yang Z, Hoffman RM, Wu Q (2020) APELA/ELA32 Reduces iodixanol-induced apoptosis, inflammatory response and mitochondrial and dna damage in renal tubular epithelial cells. Anticancer Res 40:635–643

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Lopez-Aguiar AG, Li A, Lu Y, Sekula D, Nattie EE, Freemantle S, Dmitrovsky E (2014) Mice lacking G0S2 are lean and cold-tolerant. Cancer Biol Ther 15:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM et al (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Dinarello CA, Molgora M, Garlanda C (2019) Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50(4):778–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga N, Ikeda E, Kakimoto K, Watanabe M, Shindo N, Tsuruta A, Ikeyama H, Hamamura K, Higashi K, Yamashita T et al (2016) Inhibition of G0/G1 switch 2 ameliorates renal inflammation in chronic kidney disease. EBioMedicine 13:262–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Mihai S, Codrici E, Popescu ID, Enciu AM, Rusu E, Zilisteanu D, Necula LG, Anton G, Tanase C (2019) Inflammation-related patterns in the clinical staging and severity assessment of chronic kidney disease. Dis Markers 2019:1814304

    Article  PubMed  PubMed Central  Google Scholar 

  • Northrup TE, Irwin D, Malt RA (1977) Ribosomal proteins of mouse kidney: normal status and during compensatory renal hypertrophy. Mol Cell Biochem 17:25–30

    Article  CAS  PubMed  Google Scholar 

  • Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Suszták K (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck AS, Bertola A, Saint-Paul MC, Iannelli A et al (2017) CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 67:328–338

    Article  CAS  PubMed  Google Scholar 

  • Piaszyk-Borychowska A, Széles L, Csermely A, Chiang HC, Wesoły J, Lee CK, Nagy L, Bluyssen HAR (2019) Signal integration of IFN-I and IFN-II With TLR4 involves sequential recruitment of STAT1-complexes and NFκB to enhance pro-inflammatory transcription. Front Immunol 10:1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo W, Shimizu K, Kojo S, Okeke A, Kohwi-Shigematsu T, Fujii SI, Taniuchi I (2020) Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat Commun 11(1):1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, McCue P, Dunn SR (2003) Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 284:F1138-1144

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, Li H, Dai Q, Lu C, Xu M, Zhang J, Feng J (2019) DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways. J Cell Physiol 234:3043–3057

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa K, Sano M (2020) Sodium-glucose Co-transporter 2 inhibitors correct metabolic maladaptation of proximal tubular epithelial cells in high-glucose conditions. Int J Mol Sci 21:7676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stables MJ, Shah S, Camon EB, Lovering RC, Newson J, Bystrom J, Farrow S, Gilroy DW (2011) Transcriptomic analyses of murine resolution-phase macrophages. Blood 118:e192-208

    Article  CAS  PubMed  Google Scholar 

  • Su H, Na N, Zhang X, Zhao Y (2017) The biological function and significance of CD74 in immune diseases. Inflamm Res 66:209–216

    Article  CAS  PubMed  Google Scholar 

  • Sweadner KJ, Arystarkhova E, Donnet C, Wetzel RK (2003) FXYD proteins as regulators of the Na, K-ATPase in the kidney. Ann N Y Acad Sci 986:382–387

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382

    Article  CAS  PubMed  Google Scholar 

  • Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KAM, Zoungas S, Rossing P, Groop PH, Cooper ME (2015) Diabetic kidney disease. Nat Rev Dis Primers. https://doi.org/10.1038/nrdp.2015.18

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas MC, Cooper ME, Zimmet P (2016) Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol 12:73–81

    Article  CAS  PubMed  Google Scholar 

  • Valiño-Rivas L, Baeza-Bermejillo C, Gonzalez-Lafuente L, Sanz AB, Ortiz A, Sanchez-Niño MD (2015) CD74 in kidney disease. Front Immunol 6:483

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lu YH, Tang C, Xue M, Li XY, Chang YP, Cheng Y, Li T, Yu XC, Sun B et al (2019) Calcium dobesilate restores autophagy by inhibiting the VEGF/PI3K/AKT/mTOR signaling pathway. Front Pharmacol 10:886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, Welling PA, Waikar SS, Humphreys BD (2019) The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci USA 116(39):19619–19625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Zhou H, Wu M, Zhang H, Zhang Y, Zhao Q, Brown R, Gong DW, Miao L (2020) Fc-elabela fusion protein attenuates lipopolysaccharide-induced kidney injury in mice. Biosci Rep 40:BSR20192397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XH, Pan Y, Zhan XL, Zhang BL, Guo LL, Jin HM (2016) Epigallocatechin-3-gallate attenuates renal damage by suppressing oxidative stress in diabetic db/db mice. Oxid Med Cell Longev 2016:2968462

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li W, Zhou Y (2020) Identification of hub genes in diabetic kidney disease via multiple-microarray analysis. Ann Transl Med 8:997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Katalin Susztak for her positive agreement and valuable discussion.

Funding

This study was supported by the start grants from China Pharmaceutical University (CPU20180815 HFG), the Cooperation Research Project (CPU20200228 HFG).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Harvest F. Gu; Data acquisition and analysis: Chenhua Wu, Yingjun Tao, Nan Li, Jingjin Fei; Laboratory management: Yurong Wang; Data interpretation: Jie Wu, and Harvest F. Gu; Manuscript preparation and revision: Chenhua Wu and Harvest F. Gu; All authors agreed and approved the final version of manuscript.

Corresponding authors

Correspondence to Jie Wu or Harvest F. Gu.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Consent for publication

The authors of the manuscript have read and agreed to the consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Tao, Y., Li, N. et al. Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys. J. Cell Commun. Signal. 17, 169–188 (2023). https://doi.org/10.1007/s12079-022-00685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-022-00685-z

Keywords

Navigation