Skip to main content
Log in

Therapeutic role of FNDC5/irisin in attenuating liver fibrosis via inhibiting release of hepatic stellate cell-derived exosomes

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Objective

Cleavage of fibronectin type III domain-containing protein 5 (FNDC5), a membrane-bound precursor protein, would cleave into a myokine, irisin, which is also expressed in the liver. FNDC5/Irisin has been reported to play a critical role in maintaining glucose and lipid homeostasis in the liver and in combating liver fibrosis. Recently, several studies have shown that extracellular vesicles (EVs) derived from hepatic stellate cells (HSCs) could modulate liver fibrosis; however, there is a large gap in understanding whether inhibition of fibrogenic EVs derived from HSCs could alleviate the progression of liver fibrosis. Here, we investigated the role of FNDC5/irisin in liver fibrosis and the mechanism of its inhibitory role in the release of HSC-derived fibrogenic EVs.

Methods

Experiments were performed in wild-type and FNDC5−/− mice, primary mouse HSCs, and human hepatic stellate cell line (LX2). Mice were treated with carbon tetrachloride (CCl4) or bile duct ligation (BDL) to induce liver fibrosis. EVs derived from HSCs were purified and injected intraperitoneally into mice.

Results

Our results showed that FNDC5 deficiency exacerbated CCl4-induced liver fibrosis and activation of HSCs in mice. Moreover, fibrogenic EVs derived from PDGF-BB-treated HSCs promoted HSC migration in vitro and liver fibrosis in vivo. However, administration of irisin, a cleavage of FNDC5, inhibited the release of fibrogenic EVs and activation of HSCs by promoting ubiquitylation degradation of Rab27b. In vivo, the promoting role of HSC-derived fibrogenic EVs in liver fibrosis was also reversed by irisin.

Conclusion

All these results demonstrate that FNDC5/irisin is a novel therapeutic agent for chronic liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet. 2014;383(9930):1749–1761

    Article  PubMed  Google Scholar 

  2. D’Amico G, Morabito A, D’Amico M, Pasta L, Malizia G, Rebora P, et al. Clinical states of cirrhosis and competing risks. J Hepatol. 2018;68(3):563–576

    Article  PubMed  Google Scholar 

  3. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411

    Article  PubMed  CAS  Google Scholar 

  4. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–456

    Article  PubMed  CAS  Google Scholar 

  5. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017;14(8):455–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol. 2020;73(5):1144–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, Wongjarupong N, et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology. 2018;68(1):333–348

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Chen R, Kemper S, Brigstock DR. Dynamic changes in function and proteomic composition of extracellular vesicles from hepatic stellate cells during cellular activation. Cells. 2020;9(2):290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wan L, Xia T, Du Y, Liu J, Xie Y, Zhang Y, et al. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB J. 2019;33(7):8530–8542

    Article  PubMed  CAS  Google Scholar 

  10. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–468

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xiong XQ, Chen D, Sun HJ, Ding L, Wang JJ, Chen Q, et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta. 2015;1852(9):1867–1875

    Article  PubMed  CAS  Google Scholar 

  12. Zhou B, Ling L, Zhang F, Liu TY, Zhou H, Qi XH, et al. Fibronectin type III domain-containing 5 attenuates liver fibrosis via inhibition of hepatic stellate cell activation. Cell Physiol Biochem. 2018;48(1):227–236

    Article  PubMed  CAS  Google Scholar 

  13. Mederacke I, Dapito DH, Affo S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc. 2015;10(2):305–315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113(8):E968-977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Czochra P, Klopcic B, Meyer E, Herkel J, Garcia-Lazaro JF, Thieringer F, et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol. 2006;45(3):419–428

    Article  PubMed  CAS  Google Scholar 

  16. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289

    Article  PubMed  CAS  Google Scholar 

  17. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30 (Suppp 11-13)

    Article  PubMed  CAS  Google Scholar 

  18. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, et al. Detection and quantitation of circulating human Irisin by Tandem mass spectrometry. Cell Metab. 2015;22(4):734–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61(12):1725–1738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM, et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab. 2014;16(8):711–718

    Article  PubMed  CAS  Google Scholar 

  21. Hou N, Han F, Sun X. The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin Endocrinol. 2015;83(3):339–343

    Article  CAS  Google Scholar 

  22. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98(4):E769-778

    Article  PubMed  CAS  Google Scholar 

  23. Yan B, Shi X, Zhang H, Pan L, Ma Z, Liu S, et al. Association of serum irisin with metabolic syndrome in obese Chinese adults. PLoS ONE. 2014;9(4): e94235

    Article  PubMed  PubMed Central  Google Scholar 

  24. Duran ID, Gulcelik NE, Unal M, Topcuoglu C, Sezer S, Tuna MM, et al. Irisin levels in the progression of diabetes in sedentary women. Clin Biochem. 2015;48(18):1268–1272

    Article  PubMed  CAS  Google Scholar 

  25. Espes D, Lau J, Carlsson PO. Increased levels of irisin in people with long-standing Type 1 diabetes. Diabet Med. 2015;32(9):1172–1176

    Article  PubMed  CAS  Google Scholar 

  26. Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol. 2014;592(5):1091–1107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, et al. Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications. 2013;27(4):365–369

    Article  PubMed  Google Scholar 

  28. Xiang L, Xiang G, Yue L, Zhang J, Zhao L. Circulating irisin levels are positively associated with endothelium-dependent vasodilation in newly diagnosed type 2 diabetic patients without clinical angiopathy. Atherosclerosis. 2014;235(2):328–333

    Article  PubMed  CAS  Google Scholar 

  29. Liu TY, Xiong XQ, Ren XS, Zhao MX, Shi CX, Wang JJ, et al. FNDC5 alleviates hepatosteatosis by restoring AMPK/mTOR-mediated autophagy, fatty acid oxidation, and lipogenesis in mice. Diabetes. 2016;65(11):3262–3275

    Article  PubMed  CAS  Google Scholar 

  30. Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127(1):55–64

    Article  PubMed  PubMed Central  Google Scholar 

  31. Park MJ, Kim DI, Choi JH, Heo YR, Park SH. New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell Signal. 2015;27(9):1831–1839

    Article  PubMed  CAS  Google Scholar 

  32. Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, LaRusso NF, et al. Extracellular vesicles in liver pathobiology: small particles with big impact. Hepatology. 2016;64(6):2219–2233

    Article  PubMed  Google Scholar 

  33. Ela S, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357

    Article  Google Scholar 

  34. Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, et al. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol. 2016;64(3):651–660

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Doctor Start-up Fund of Affiliated Hospital of Guizhou Medical University, gyfybsky-2022–15; Science and Technology Planning Project of Guizhou Province (Basic of Guizhou Science and Technology Cooperation -ZK[2023] Key Project[038]).

Author information

Authors and Affiliations

Authors

Contributions

Drafting of the manuscript: XL. Research conception and design: FG, YL. Data analysis and interpretation: WS, XN. Statistical analysis: XL, YL. Literature retrieval: FG, XL. Critical revision of the manuscript: QY. Approval of the final manuscript: all authors.

Corresponding author

Correspondence to Qin Yang.

Ethics declarations

Conflict of interest

Xin Liao, Yilin Luo, Fang Gu, Wen Song, Xin Nie, Qin Yang declare that they have no competing interests.

Ethical approval

Protocols for in vivo experiments were approved by the Animal Welfare and Use Committee of Guizhou Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Luo, Y., Gu, F. et al. Therapeutic role of FNDC5/irisin in attenuating liver fibrosis via inhibiting release of hepatic stellate cell-derived exosomes. Hepatol Int 17, 1659–1671 (2023). https://doi.org/10.1007/s12072-023-10523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-023-10523-y

Keywords

Navigation