Skip to main content
Log in

Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Crystallization is extensively used in different industrial applications, including the production of a wide range of materials such as fertilizers, detergents, food and pharmaceutical products, as well as in the mineral processing industries and treatment of waste effluents. In spite of the wide-spread use of crystallization, a clear understanding of the thermodynamic, kinetic and hydrodynamic aspects of the design methodologies are not yet well established. More often than not crystallization is still considered an art especially in fine-chemicals, pharmaceuticals and life-sciences sector. It is essential to understand and relate key thermodynamic, kinetic and hydrodynamic aspects to crystallizer performance, not just in terms of yield but also in terms of product quality (characterized by particle size distribution, morphology, polymorphism and the amount of strain as well as the uptake of solvent or impurities in the crystal lattice). This paper attempts to do that by critically reviewing published experimental and modelling studies on establishing and enhancing state-of-the-art thermodynamic, kinetic and hydrodynamic aspects of crystallization. Efforts are made to discuss and raise points for emerging modelling tools needed for a flexible design and operation of crystallizers and crystallization processes that are needed to meet the ever increasing demand on precise product specifications. Focus is on bringing out the trends which can be used as perspectives for future studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abbas A and Ramagnoli J A 2007 Multiscale modeling, simulation and validation of batch cooling crystallization. Sep. Purif. Technol. 53: 153–163

    Google Scholar 

  • Adhiyaman R and Basu S K 2006 Crystal modification of dipyridamole using different solvents and crystallization conditions. Int. J. Pharm. 321(1–2): 27–34

    Google Scholar 

  • Adamson A W and Ghast A P 1997 Physical Chemistry of Surfaces, books.google.co.in/books?id=ENDCSAAACAAJ

  • Akiti O and Armenante P M 2004 Experimentally validated micro-mixing based CFD model for fed-batch stirred-tank reactors. AIChE J. 50(3): 566

    Google Scholar 

  • Alexopoulos A H, Maggioris D and Kiparissides C 2002 CFD analysis of turbulence non-homogeneity in mixing vessels a two-compartment model. Chem. Eng. Sci. 57: 1735–1752

    Google Scholar 

  • Al-Zoubi N and Malamataris S 2003 Effects of initial concentration and seeding procedure on crystallization of orthorhombic paracetamol from ethanolic solution. Int. J. Pharmaceutics. 260: 123–135

    Google Scholar 

  • Attarakih M M, Bart H J and Faqir N M 2004 Numerical solution of the spatially distributed population balance equation describing the hydrodynamics of interacting liquid–liquid dispersions. Chem. Eng. Sci. 59(12): 2567–2592

    Google Scholar 

  • Attarakih M M, Bart H J and Faqir N M 2006 Numerical solution of the bivariate population balance equation for the interacting hydrodynamics and mass transfer in liquid–liquid extraction columns. Chem. Eng. Sci. 61(1): 113–123

    Google Scholar 

  • Attarakih M M, Drumm C, Bart H J and Faqir N M 2009 Solution of the population balance equation using the sectional quadrature method of moments (SQMOM). Chem. Eng. Sci. 64: 742–752

    Google Scholar 

  • Avrami M 1939 Kinetics of phase change. I. General theory. J. Chem. Phys. 7(12): 1103–1112

    Google Scholar 

  • Baier F O and Widmer F 2000 Measurement of the bubble size distribution in a gas-liquid-contactor using the PVM and image analysis. Technical report, Institute of Process Engineering, Swiss Federal Institute (ETH), Zurich, Switzerland

  • Baldyga J 1989 Turbulent mixer model with application to homogeneous, instantaneous chemical reactions. Chem. Eng. Sci. 44: 1175–1182

    Google Scholar 

  • Baldyga J and Bourne J R 1999 Turbulent mixing and chemical reactions. Wiley: Chichester, UK

  • Baldyga J and Orciuch W 1997 Closure problem for precipitation. Chem. Eng. Res. Des. 75A: 160

  • Baldyga J and Orciuch W 1999 Closure method for turbulence in inhomogeneous turbulence. In: Proc. of 14th Symp. on Ind. Crystallization, 1069

  • Baldyga J and Orcuich W 2001 Barium sulphate precipitation in a pipe: an experimental study and CFD modeling. Chem. Eng. Sci. 56: 2435–2444

    Google Scholar 

  • Baldyga J, Podgorska W and Pohorecky R 1995 Mixing precipitation model with application to double feed semibatch precipitation. Chem. Eng. Sci. 50: 1281

    Google Scholar 

  • Bakker A and van den Akker H E A 1994 A computational model for the gas-liquid flow in stirred reactors. Trans. Inst. Chem. Eng. 72: 594–606

    Google Scholar 

  • Barrett P and Glennon B 1999 In-line FBRM monitoring of particle size in dilute agitated suspensions. Part. Syst. Charact. 16(5): 207–211

    Google Scholar 

  • Barret P and Glennon B 2002 Characterizing the metastable zone width and solubility curve using LASENTEC FBRM and PVM. Trans. I. Chem. E. 80 (Part A): 945–952

  • Barrett P, Smith B, Worlitschek J, Bracken V, Sullivan B and Grady D 2005 A review of the use of process analytical technology for the understanding and optimization of production batch crystallization processes. Org. Proces. Res. & Develop. 9: 348–355

    Google Scholar 

  • Barthe S and Rousseau R W 2006 Utilization of FBRM in the control of CSD in a batch cooled crystallizer. Chem. Eng. Tech. 29(2): 206–211

    Google Scholar 

  • Bauer M and Eigenberger G 2001 Multiscale modelling of hydrodynamics, mass transfer and reaction in bubble column reactors. Chem. Eng. Sci. 56: 1067–1074

    Google Scholar 

  • Becker R 2001 Attributes and limitations of FBRM and PVM for scale-up and troubleshooting of crystallization processes. In: 11th Annual Meeting of the Association for Crystallization Technology, Northbrook, Illinois

  • Bermingham S K, Neumann A M, Kramer H J M, Verheijen P J T, van Rosemalen G M and Grievink J 2000 AIChE Symp. Ser. 96: 250

  • Bezzo F, Macchietto S and Pantelides C C 2003 General hybrid multizonal/CFD approach for bioreactor modelling. AIChE J. 49: 2133–2148

    Google Scholar 

  • Bharati M H and MacGregor J F 1998 Multivariate image analysis for real-time process monitoring and control. Ind. Eng. Chem. Res. 37(12): 4715–4724

    Google Scholar 

  • Blagden N, Song M, Davey R J, Seton L and Seaton C C 2005 Ordered aggregation of benzamide crystals induced using a “motif copper” additive. Cryst. Growth & Des. 5(2): 467–471

    Google Scholar 

  • Bladgen N, deMatas M, Gavan P T and York P 2007 Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug. Deliv. Rev. 59(7): 617–630

    Google Scholar 

  • Bonnett P E, Carpenter K J, Dawson S and Davey R J 2003 Solution crystallization via a submerged liquid-liquid phase boundary: Oiling out. Chem. Comm. 6: 698–699

    Google Scholar 

  • Braatz R D 2002 Advanced control of crystallization processes. Annu. Rev. Control. 26: 87–99

    Google Scholar 

  • Braatz R D, Ma D L, Togkalidou T, Fujiwara M, Patel S D and Tafti D K 2000 Modeling and control of multidimensional crystallization. AIChE Annual Meeting, Los Angeles, California, Paper 253h

  • Braatz R D, Fujiwara M, Ma D L, Togkalidou T and Tafti D K 2002 Int. J. Mod. Phys. B 16: 346–353

    Google Scholar 

  • Brittain H G 1999 Polymorphism in Pharmaceutical Solids, Ronier Lenin Hernandez Rueda

  • Bungert B, Sadowski G and Arlt W 1998 Separations and material processing in solutions with dense gases. Ind. Eng. Chem. Res. 37: 3208–3220

    Google Scholar 

  • Burton W K, Cabrera N and Frank F C 1951 The growth of crystals. Philos. Trans. R. Soc. 243: 299– 358

    MATH  MathSciNet  Google Scholar 

  • Cacciuto A, Auer S and Frenkel D 2004 Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428: 404–406

    Google Scholar 

  • Chen C M and Higg P G 1998 J. Chem. Phys. 108: 4305

    Google Scholar 

  • Choi Y J, Chung S T, Oh M and Kim H S 2005 Cryst. Growth Des. 5: 959–968

  • Clark N N and Turton R 1988 Chord length distributions related to bubble size distributions in multiphase flows. Int. J. Multi-phase Flow 14(4): 413–424

    Google Scholar 

  • Codan L, Babler M U and Mazzotti M 2011 Design of crystallization processes for the resolution of conglomerate-forming chiral compounds exhibiting oiling out. In: 18th International Symposium on Industrial Crystallization, Zurich, Switzerland, September 13–16th

  • Davey R J, Allen K and Bladgen N 2002 Crystal engineering-nucleation, the key step. J. Cryst. Eng. Commun. 4(47): 257–264

    Google Scholar 

  • David R, Villermaux J, Marchal P and Klein J P 1991 Crystallization and precipitation engineering - IV. Kinetic model of adipic acid crystallization. Chem. Eng. Sci. 46: 1129

    Google Scholar 

  • DeBenedetti P G, Tom J W, Kwauk X and Yeo S D 1992 Rapid expansion of supercritical solutions (RESS): Fundamentals and Applications. Fluid Phase Equilibria. 82: 311–321

    Google Scholar 

  • Deneau E and Steele G 2005 An in-line study of oiling out and crystallization. Org. Proc. Res. Dev. 9: 943–950

    Google Scholar 

  • Diepen PJ 1998 Cooling crystallization of organic compounds. PhD-Thesis, Delft University of Technology, Delft

  • Dimonte J E, Szutowski H and Niederberger H 2000 Salt Crystallization Systems: Design Features & Operating Advantages. In: Proc 8th World Salt Symposium, vol. 1, Elsevier, The Hague

  • Dirksen J A and Ring T A 1991 Fundamentals on crystallization: Effects on PSDs and morphology. Chem. Eng. Sci. 46(10): 2389–2427

    Google Scholar 

  • Doye J K and Frenkel D 1999 Kinetic Monte Carlo simulations of the growth of polymer crystals. J. Chem. Phys. 110: 2692

    Google Scholar 

  • Draucker L C, Janakat M, Lazzaroni M J, Bush D, Eckert C A, Frank T C and Olson J D 2007 Experimental determination and model prediction of solid solubility of multifunctional compounds in pure and mixed nonelectrolyte solvents. Ind. Eng. Chem. Res. 46: 2198–2204

    Google Scholar 

  • Dunitz JD 2003 Crystal and co-crystal- A second opinion. Cryst. Engng. Comm. 5: 506

    Google Scholar 

  • Eek RA and Dijkstra S 1995 Design and experimental evaluation of a state estimator for a crystallization process. Ind. Eng. Chem. Res. 34: 567–574

    Google Scholar 

  • Eek R A, Dijkstra S and van Rosmalen G M 1995 Dynamic modeling of suspension crystallizers, using experimental data. AIChE J. 41(3): 571–584

    Google Scholar 

  • Evans U R 1945 Trans. Faraday Soc. 41: 365

    Google Scholar 

  • Farrell R J and Tsai Y C 1995 Nonlinear controller for batch crystallization: development and experimental demonstration. AIChE J. 41(10): 2318–2321

    Google Scholar 

  • Feng L and Berglund K 2002 ATR-FTIR for determining optimal cooling curves for batch crystallization of succinic acid. Cryst. Growth Des. 2(5): 449–452

    Google Scholar 

  • Févotte G and Klein J P 1994 Application of on-line calorimetry to the advanced control of batch crystallizers. Chem. Engng. Sci. 49: 1323–1336

    Google Scholar 

  • Févotte G and Klein J P 1996 A new policy for the estimation of the course of supersaturation in batch crystallization. Can. J. Chem. Engng. 74: 372–384

    Google Scholar 

  • Foddi O, Abbas A, Grosso M and Romagnoli J A 2007 Modeling, validation and optimization of anti-solvent crystallization: A new approach in predicting solubility using a thermodynamic model. A.I.Ch.E. Conf.

  • Frawley P J, Mitchell N A, O’Ciardha C T and Hutton K W 2012 The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions. Chem. Eng. Sci. 75: 183–197

    Google Scholar 

  • Fujiwara M, Chow P S, Ma D L and Braatz R D 2001 Paracetamol crystallization using laser back-scattering and ATR-FTIR spectroscopy: metastability, agglomeration and control. Cryst. Growth & Des. 2(5): 363–370

    Google Scholar 

  • Garcia E, Veesler S, Biostelle R and Hoff C 1999 Crystallization and dissolution of pharmaceutical compounds: An experimental approach. J. Cryst. Growth 198–199(2): 1360–1364

    Google Scholar 

  • Gelbard F and Seinfeld J H 1978 Numerical solution of the dynamic equation for particulate systems. J. Comput. Phys. 28: 357–375

    MATH  MathSciNet  Google Scholar 

  • Gelbard F, Tambour Y and Seinfeld J H 1980 Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76(2): 541–556

    Google Scholar 

  • Gerstlauer A, Motz S, Mitrovic A and Gilles E D 2002 Development, analysis and validation of population models for continuous and batch crystallizers. Chem. Eng. Sci. 57: 4311–4327

    Google Scholar 

  • Gosman A D, Lekakou C, Politis S, Issa R I and Looney M K 1992 Multi-dimensional modeling of turbulent two-phase flows in stirred reactors. AIChE J. 38(12): 1947

    Google Scholar 

  • Guha D, Ramchandran P A and Duduckovic M 2007 Flow field of suspended solids in a stirred tank rector by Lagrangian tracking. Chem. Eng. Sci. 62: 6143

    Google Scholar 

  • Guiraud P, Costes J and Bertrand J 1997 Local measurements of fluid and particle velocities in stirred suspension. Chem. Eng. J. 68: 75–86

    Google Scholar 

  • Gunawan R, Fusman I and Braatz R D 2004 High resolution algorithms for multidimensional population balance equations. AIChE J. 50: 2738–2749

    Google Scholar 

  • Han J H and Kim S D 1993 Bubble chord length distribution in three-phase fluidized beds. Chem. Eng. Sci. 48(6): 1033–1039

    Google Scholar 

  • Haseltine E L, Patience D B and Rawlings J B 2005 On the stochastic simulation of particulate systems. Chem. Eng. Sci. 60: 2627–2641

    Google Scholar 

  • Heffels C M G, Heitzmann D, Hirleman E and Scarlett B 1994 The use of azimuthal intensity variations in diffraction patterns for particle shape characterization. Part. Part. Syst. Charact. 11: 194– 199

    Google Scholar 

  • Heffels C M G, Verheijen P J T, Heitzmann D and Scarlett B 1996 Correction of the effect of particle shape on the size distribution measured with a laser diffraction experiment. Part. Part. Syst. Charact. 13: 271–279

    Google Scholar 

  • Helt J E and Larson M A 1977 Effects of temperature on the crystallization of potassium nitrate by direct measurement of supersaturation. AIChE J. 23(6): 822–830

    Google Scholar 

  • Henczka M, Baldyga J and Shekunov B Y 2005 Particle formation by turbulent mixing with supercritical anti-solvent. Chem. Eng. Sci. 60: 2193–2201

    Google Scholar 

  • Hojjati H and Rohani S 2006 Measurement and prediction of solubility of paracetamol in water-isopropanol solution: Part 1 - measurement and data analysis. Org. Proces. Res & Develop. 10: 1101– 1117

    Google Scholar 

  • Hollander E D, Derksen J J, Bruinsma O S L, van der Akker H E A and van Rosmalen G M 2001 A numerical study on the coupling of hydrodynamics and orthokinetic agglomeration. Chem. Eng. Sci. 56: 2531

  • Hounslow M J, Ryall R L and Marshall V R 1988 A discretized population balance for nucleation, growth, and aggregation. AIChE J. 34(11): 1821–1832

    Google Scholar 

  • Hu Q, Rohani S, Wang D X and Jutan A 2005 Optimal control of a batch cooling seeded crystallizer. Powder Technol. 156(2–3): 170–176

    Google Scholar 

  • Hulburt H M and Katz S 1964 Some problems in particle technology. Chem. Eng. Sci. 19: 555– 574

    Google Scholar 

  • Jager J, de Wolf S, Klapwijk W and de Jong E J 1987 A new design for on-line product-slurry measurements, Industrial Crystallization 87, Chemical Engineering Progress Symposium Series, pages 415–418, Bechyne, Czechoslovakia: Elsevier Science

  • Jans B J, Bischoff R, Fischer O and Wynn N 1996 Heat Pump Crystallizer. In: Proc. 13th Symp. on Industrial Crystallization, Toulouse, 539

  • Jansens P J and Matsuoka M 2000 Encyclopedia of Separation Science, Vol. 3, Chap. II, Melt Crystallization. London: Academic Press

  • Jaworski Z and Nienow A W 2003 CFD modelling of continuous precipitation of barium sulphate in a stirred tank. Chem. Eng. J. 91: 167–174

    Google Scholar 

  • Johnson B K, Szeto C, Davidson O and Andrews A 1997 Optimization of pharmaceutical batch crystallization for filtration and scale-up, In AIChE J., Paper 16a

  • Jones A G 2002 Crystallization process systems. Butterworth-Heinemann

  • Joshi J B, Nere N K, Rane C V, Murthy B N, Mathpati C S, Patwardhan A W and Ranade V V 2011 CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial Flow Impellers, Multiple Impellers and Multiphase Dispersions). The Canad. J. Chem. Eng. 89: 754–816

    Google Scholar 

  • Jung J and Perrut M 2001 Particle using supercritical fluids: Literature and patent survey. J. Supercritical Fluids 20: 179–219

    Google Scholar 

  • Karpinski P H 2006 Polymorphism of active pharmaceutical ingredients. Chem. Eng. Technol. 29(2): 233–237

    Google Scholar 

  • Khopkar A R, Kasat G R, Pandit A B and Ranade V V 2006 Computational fluid dynamics simulation of the solid suspension in stirred slurry reactor. Ind. Chem. Res. Des. 45: 4416

    Google Scholar 

  • Kiesow K, Tumakaka F and Sadowski G 2008 Experimental investigation and prediction of oiling out during crystallization process. J. Cryst. Growth. 310: 4163–4168

    Google Scholar 

  • Knox M, Trifkovic M and Rohani S 2009 Combining anti-solvent and cooling crystallization: Effect of solvent composition on yield and meta stable zone width. Chem. Eng. Sci. 64: 3555–3563

    Google Scholar 

  • Koenig H A 1998 Modern computational methods. Philadelphia, PA: Taylor & Francis

  • Kougoulos E, Jones A G and Wood-Kaczmar M 2005 Chem. Eng. Res. Des. 83: 30–39

    Google Scholar 

  • Kramer H J M and Jansens P J 2003 Tools for design and control of industrial crystallizers-state of the art & future needs. Chem. Eng. Technol. 26(3): 247–255

    Google Scholar 

  • Kramer H J M, Dijkstra J W, Neumann A M, Meadhra R O and van Rosmalen G M 1996 Modelling of industrial crystallizers, a compartmental approach using a dynamic flow-sheeting tool. J. Cryst. Growth 166: 1084–1088

    Google Scholar 

  • Kramer H J M, Bermingham S K and van Rosmalen G M 1999 Design of industrial crystallisers for a given product quality. J. Cryst. Growth 199: 729–737

    Google Scholar 

  • Kresta S, Anthieren G and Parsiegla K 2005 Chem. Eng. Sci. 60: 2135–2153

    Google Scholar 

  • Kubota N 2010 A unified interpretation of metastable zone widths and induction times measured for seeded solutions. J. Cryst. Growth 312: 548–554

    Google Scholar 

  • Kubota N, Doki N, Yokots M and Jagdeesh D 2001 Seeding policy in cooling crystallization. Pow. Tech. 121: 31–38

    Google Scholar 

  • Kumar S and Ramkrishna D 1996a On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci. 51(8): 1311–1332

    Google Scholar 

  • Kumar S and Ramkrishna D 1996b On the solution of population balance equations by discretization—II. A moving pivot technique. Chem. Eng. Sci. 51(8): 1333–1342

    Google Scholar 

  • Kumar S and Ramkrishna D 1997 On the solution of population balance equations by discretization—III. Simultaneous nucleation, growth and aggregation. Chem. Eng. Sci. 52: 4659–4679

    Google Scholar 

  • Kwang-Joo J and Mersmann A 2001 Estimation of meta stable zone width in different nucleation processes. Chem. Eng. Sci., Industrial Crystallization 56(7): 2315–2324

    Google Scholar 

  • Lafferrere L, Hoff C and Veesler S 2004 In-situ monitoring of the impact of liquid-liquid phase separation on drug crystallization by seeding. Cryst. Growth Des. 4(6): 1175–1180

    Google Scholar 

  • Lasentec, Lasentec 1997, Brochure

  • Liu W, Clark N N and Karamavruc A I 1998 Relationship between bubble size distributions and chord-length distribution in heterogeneously bubbling systems. Chem. Eng. Sci. 53(6): 1267–1276

    Google Scholar 

  • Ljungqvist M and Rasmuson A 2001 Numerical simulation of the two-phase flow in an axially stirred reactor. Trans. IChemE 79(Part A): 533

    Google Scholar 

  • Llinas A and Goodman J M 2008 Polymorph control: past, present and future. Drug Disc. Today 13(5/6): 198–210

    Google Scholar 

  • Ma D L, Togkalidou T and Braatz R D 1999 Multidimensional crystal growth from solution, In: AIChE Annual Meeting, Paper 03A02

  • Ma D L, Braatz R D and Tafti D K 2002 Int. J. Mod. Phys. B. 16: 383–390

    Google Scholar 

  • Maisels A, Kruis F E and Fissan H 1999 Direct Monte Carlo simulations of coagulation and aggregation. J. Aerosol Science 30: S417–S418

    Google Scholar 

  • Mandelken L 2001 Crystallization of Polymers, 2nd ed. Cambridge: Cambridge University Press

  • Mann R and Mavros P 1982 Analysis of unsteady tracer dispersion and mixing in a stirred vessel using interconnected networks of ideal flow zones. In: Papers presented at the 4th European conf. on mixing (pp. 35–47), Noordwijkerhout, The Netherlands, April 1982. Cranfleld, Bedford, UK: BHRA Fluid Engineering

  • Mann R, Knysh P, Rasekoala E A and Didari M 1987 Mixing in a closed stirred vessel: Use of networks of zones to interpret mixing in a closed stirred vessel, In: Fluid mixing: Vol. III. International Chemical Engineering Symposium Series (No. 108, pp. 49–60)

  • Marchicio D L and Fox R O 2005 Solution of the population balance equation using the direct quadrature method of moments. J. Aerosol Science 36: 43–73

    Google Scholar 

  • Marchal P, David R, Klein J P and Villermaux J 1998 Crystallization and precipitation engineering. I: An efficient method for solving population balance in crystallization with agglomeration. Chem. Eng. Sci. 43: 59–67

    Google Scholar 

  • Marchisio D, Barressi A A and Fox R O 2001 Simulation of turbulent precipitation in a semi-batch Taylor-Couette reactor using CFD. AIChE J. 47(4): 664

    Google Scholar 

  • Marqusee J A and Ross J 1983 Kinetics of phase transitions: Theory of Ostwald ripening. J. Chem. Phys. 79: 373–378

    Google Scholar 

  • Martın A and Cocero M 2008 Micronization processes with supercritical fluids: Fundamentals and mechanisms. Adv. Drug Delivery Rev. 60: 339–350

    Google Scholar 

  • Matthews H B and Rawlings J B 1998 Batch crystallization of a photochemical: Modeling, control and filtration. AIChE J. 44(5): 1119–1127

    Google Scholar 

  • McCoy B and Madras G 2008 Cluster kinetics of phase transitions: Applications to innovative technologies. Chem. Eng. Commun. 196: 204–233

    Google Scholar 

  • McGraw R 1997 Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27: 255–265

    Google Scholar 

  • McKeown R R, Wertman J T and Dell’Orco C 2011 Crystallization Design and Scale-up, Chemical Engineering in the Pharmaceutical Industry, John Wiley & Sons, Inc., Publication, 213–248

  • Meares P 1965 Polymers: Structure and properties. New York: Van Nostrand

  • Mersmann A 1996 Supersaturation and nucleation. Chem. Eng. Res. Des. 74: 812

  • Mersmann A and Bartosch K 1998 How to predict metastable zone width. J. Cryst. Growth 183: 240–250

    Google Scholar 

  • Micale G, Montante G, Grisafi F, Brucato A and Godfrey J 2000 CFD simulation of particle distribution in stirred reactors. Trans. IChemE 78(Part A): 435

    Google Scholar 

  • Micale G, Grisafi F, Rizzuti L and Brucato A 2004 CFD simulation of particle suspension height in stirred vessels. Chem. Eng. Res. Des. 82: 1204

    Google Scholar 

  • Miller S M and Rawlings J B 1994 Model identification and control strategy for batch cooling crystallizers. AIChE J. 40(8): 1312–1327

    Google Scholar 

  • Mirmehrabi M, Rohani S and Perry L 2006 Thermodynamic modeling of activity coefficient and prediction of solubility: Part 2. Semipredictive or semi empirical models. J. Pharm. Sci. 95(4): 798–809

    Google Scholar 

  • Monnier O, Klein J P, Hoff C and Ratsimba B 1996 Particle size determination by laser reflection: methodology and problems. Part. Part. Syst. Charact. 13: 10–17

    Google Scholar 

  • Montante G and Magelli F 2005 Modelling of solids distribution in stirred tanks: Analysis of simulation strategies and comparison with experimental data. Int. J. Comput. Fluid Dyn. 19: 253

    Google Scholar 

  • Moody E G and Collins L R 2003 Effect of mixing on the nucleation and growth of Titania particles. Aerosol Sci. Technol. 37: 403

    Google Scholar 

  • Muhr H, David R, Villermaux J and Jezequel P H 1996 Crystallization and precipitation engineering - VI. Solving population balance in the case of the precipitation of silver bromide crystals with high primary nucleation rates by using the first order upwind differentiation. Chem. Eng. Sci. 51(2): 309–319

    Google Scholar 

  • Mullin J W 2001 Crystallization-Fourth Edition. Butterworth-Heinemann

  • Mullin J W and Leci C J 1972 Desupersaturation of seeded citric acid solutions in a stirred vessel. AIChE Symp. Ser. 68(121): 8–20

    Google Scholar 

  • Myerson A 2002 Handbook of industrial crystallization. Butterworth-Heinemann

  • Nagy Z K, Fujiwara M, Woo X Y and Braatz R D 2008 Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments. Ind. Eng. Chem. Res. 47: 1245–1252

    Google Scholar 

  • Nienow A W 1985 In: Mixing in the process industries, N Harnby et al (eds), Butter-worth, London

  • Nowee S M, Abbas A and Romagnoli J A 2008 Model-based optimal strategies for controlling particle size in anti-solvent crystallization operations. Cryst. Growth Des. 8(8): 2698–2706

    Google Scholar 

  • Nyvlt J, Sohnel O, Matachova M and Broul M 1985 The kinetics of industrial crystallization. Elsevier

  • Ohtaki H 1998 Crystallization processes. Wiley

  • Pacek A W, Moore I P T, Nienow A W and Calabrese R V 1994 Video technique for measuring dynamics of liquid-liquid dispersion during phase inversion. AIChE J. 40: 1940–1949

    Google Scholar 

  • Paul E L, Atiemo-Obeng V A and Kresta S 2004 Handbook of industrial mixing science and practice. John-Wiley & Sons Publication

  • Phillips R, Rohani S and Baldyga J 1999 Micromixing in a single-feed semi-batch precipitation process. AIChE J. 45: 82–92

    Google Scholar 

  • Pinelli D, Nocentini M and Magelli F 2001 Solids distribution in stirred slurry reactors: influence of some mixer configurations and limits to the applicability of a simple model for predictions. Chem. Eng. Commun. 188: 91–107

    Google Scholar 

  • Pipino M, Barresi A A and Fox R O 1995 A PDF approach to the description of homogeneous nucleation. In: Proc. of 4th Int. Conf. on Multiphase Flow in Ind. Plants, Ancona, Italy, page 245

  • Piton D, Fox R O and Marcant B 2000 Simulation of fine particle formation by precipitation using computational fluid dynamics. Can. J. Chem. Engng. 78: 983

    Google Scholar 

  • Pohorecky R and Baldyga J 1985 The effect of micromixing on the course of precipitation in an unpremixed feed continuous crystallizer. In: Proc. of 4th Eur. Conf. on Mixing (BHRA), Wurzburg, West Germany, page 105

  • Puel F, Marchal P and Klein J 1997 Habit transient analysis in industrial crystallization using two dimensional crystal size technique. Chem. Eng. Res. Dev. 75: 193–205

    Google Scholar 

  • Purohit R and Venugopalan P 2009 Polymorphism: An overview. Resonance, pp. 882–893

  • Ramkrishna D 1985 The status of population balances. Rev. Chem. Eng. 3(1): 49–95

    Google Scholar 

  • Randolph A D, White E T and Low C D 1981 On-line measurement of fine-crystal response to crystallizer disturbances. Ind. Eng. Chem. Proc. Des. Dev. 20: 496–503

    Google Scholar 

  • Rawlings J B and Patience D B 1999 On-line monitoring and control of crystal size and shape. Ann. Meeting of the International Fine Particle Research Institute, Somerset, New Jersey

  • Rawlings J B, Witkowski W R and Eaton J W 1992 Modelling and control of crystallizers. Powder Technol. 69: 3–9

    Google Scholar 

  • Rawlings J B, Miller S M and Witkowski W R 1993 Model identification and control of solution crystallization processes: A review. Ind. Eng. Chem. Res. 32: 1275–1296

    Google Scholar 

  • Redman T P and Rohani S 1994 On-line determination of supersaturation of a KCL-NaCL aqueous solution based on density measurement. Can. J. Chem. Engng. 72(1): 64–71

    Google Scholar 

  • Redman T, Rohani S and Strathdee G 1997 Control of the crystal mean size in a pilot plant potash crystallizer. Chem. Eng. Res. Dev. 75: 183–192

    Google Scholar 

  • Reverchon E and Adami R 2006 Nanomaterials and supercritical fluids. J. Supercrit Fluids. 37: 1–22

    Google Scholar 

  • Rewatkar V B and Joshi J B 1991 Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 2. Mathematical model. Ind. Eng. Chem. Res. 30: 1784

    Google Scholar 

  • Rohani S, Horne S and Murthy K 2005 Control of product quality in batch crystallization of pharmaceuticals and fine chemicals. Part 2. External Control. Org. Proc. Res. & Dev. 9: 873–883

    Google Scholar 

  • Rovang R D and Randolph A D 1980 On-line particle size analysis in the fines loop of a KCl crystallizer. Design, Control, and Analysis of Crystallization Processes, vol. 76, pages 18–26. AIChE, New York. AIChE Symp. Ser.

  • Ruf A, Worlitschek J and Mazzotti M 2000 Modeling and experimental analysis of PSD measurements through FBRM. Part. & Part. Syst. Charac. 17(4): 167–179

    Google Scholar 

  • Sardeshpande M V, Sagi A R, Juvekar A V and Ranade V V 2009 Solid suspension and liquid phase mixing in solid–liquid suspensions. Ind. Eng. Chem. Res. 48: 9713–9722

    Google Scholar 

  • Sardeshpande M V, Juvekar A V and Ranade V V 2011 Solid suspensions in stirred tanks: UVP measurements and CFD simulations. Canad. J. Chem. Eng. 89: 1112–1121

    Google Scholar 

  • Sbrizzai F, Lavezzo V, Verzicco R, Campolo M and Soldati A 2006 Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor. Chem. Eng. Sci. 61: 2843–2851

    Google Scholar 

  • Schmidt B, Patel J, Ricard F X, Brechtelsbauer C M and Lewis N 2004 Application of process modelling tools in the scale-up of pharmaceutical. Org. Process Res. Dev. 8: 998–1008

    Google Scholar 

  • Scholl J, Vicum L, Muller M and Mazzotti M 2006 Precipitation of L-glutamic acid: Determination of nucleation kinetics. Chem. Eng. Technol. 29(2): 257–264

    Google Scholar 

  • Sha Z, Louhi-Kultanen M, Oinas P and Palosaari S 1999 CFD simulation of size dependent classification in an imperfectly mixed suspension crystallizer. In: Proc. of the ldth Int. Syrup. on Industrial Crystallization, Cambridge, UK

  • Sha Z, Palosaari S, Oinas P and Ogawa K 2001 CFD simulation of solid suspension in a stirred tank. J. Chem. Eng. Jpn. 34: 621

    Google Scholar 

  • Shah B H, Ramkrishna D and Borwanker J D 1977 Simulation of particulate systems using the concept of the interval of quiescence. AIChE J. 23: 897–904

    Google Scholar 

  • Shangfeng Y, Genbo S, Zhengdong L and Rihong J 1999 Rapid growth of KH2 PO4 crystals in aqueous solutions with additives. J. Cryst. Growth 197: 383–387

    Google Scholar 

  • Shekunov B Y and Grant D J W 1997 In Situ optical interferometric studies of the growth and dissolution behaviour of paracetamol (Acetaminophen): 1. Growth kinetics. J. Phys. Chem. B. 101: 3973–3979

    Google Scholar 

  • Sierra-Pallares J, Marchisio D L, Parra-Santos M T, García-Serna J, Castro F and Cocero M J 2012 A computational fluid dynamics study of supercritical anti-solvent precipitation: Mixing effects on particle size. AIChE J. 58: 385–398. doi:10.1002/aic.12594

    Google Scholar 

  • Simmons M J H, Langston P A and Burbidge A S 1999 Particle and droplet size analysis from chord distributions. Pow. Tech. 102(1): 75–83

    Google Scholar 

  • Singh P N and Ramkrishna D 1977 Solution of population balance equations by MWR. Comput. Chem. Eng. 1: 23–31

    Google Scholar 

  • Sohnel O and Garside J 1992 Precipitation: Basic principles and industrial applications. Butterworth-Heinemann

  • Song M and Qiu XJ 1999 Alternative to the concept of the interval of quiescence (IQ) in the Monte Carlo simulation of population balances. Chem. Eng. Sci. 54: 5711–5715

    Google Scholar 

  • Sotowa K, Naito K, Kano M, Hasebe S and Hashimoto I 2000 Application of the method of characteristics to crystallizer simulation and comparison with finite difference for controller performance evaluation. J. Process Control 10: 203–208

    Google Scholar 

  • Subramaniam B, Rajewski R A and Snavley K 1997 Pharmaceutical processing with supercritical carbon-di-oxide. J. Pharm. Sci. 86: 885–890

    Google Scholar 

  • Tadayyon A and Rohani S 1998 Determination of particle size distribution by Par-TecR 100: Modeling and experimental results. Part. Part. Syst. Charact. 15(3): 127–135

    Google Scholar 

  • Tahti T, Louhi-Kultanen M and Palosaari S 1999 On-line measurement of crystal size distribution during batch crystallization. In: Proceedings of 14th International Symposium on Industrial Crystallization, Cambridge, UK

  • Tavare N S 1987 Simulation of Ostwald ripening in a batch crystallizer. AIChE J. 33(1): 152

    Google Scholar 

  • ter Horst J H, Kramer H J M, van Rosmalen G M and Jansens P J 2002 Molecular modeling of the crystallization of polymorphs. Part I: The morphology of HMX polymorphs. J. Cryst. Growth 237–239: 2215–2220

  • Togkalidou T, Fujiwara M, Patel S and Braatz R D 2001 Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy. J. Cryst. Growth 231: 534–543

    Google Scholar 

  • Tom J W and Debenedetti P G 1991 Particle formation with supercritical fluids: A review. J. Aerosol Sci. 22: 555–584

    Google Scholar 

  • Tung H H, Paul E L, Midler M and Mc Cauley J A 2009 Crystallization of organic compounds. An industrial perspective. John Wiley & Sons

  • Urban Z and Liberis L 1999 Hybrid gPROMS®-CFD modelling of an industrial scale crystalliser with rigorous crystal nucleation and growth kinetics and a full population balance. In: Proceedings: Chemputers 1999 conf., Düsseldorf, Germany

  • Variankaval N, Kote A S and Doherty M F 2008 From form to function: Crystallization of active pharmaceutical ingredients; 2008. AIChE J. 54(7): 1682–1688

    Google Scholar 

  • Veesler S, Lafferrere L, Garcia E and Hoff C 2003 Org. Process Res. Dev. 7: 983

    Google Scholar 

  • Vlaev D, Mann R, Lossev V, Vlaev S V, Zahradnik J and Seichter P 2000 Macro-mixing and Streptomyces Fradiae. Modelling oxygen and nutrient segregation in an industrial bioreactor. Chem. Eng. Res. Des. 78: 354–362

    Google Scholar 

  • Vrabel P, van der Lans R G J M, Luyben K C A M, Boon L and Nienow A W 2000 Mixing in large-scale vessels stirred with multiple radial or radial and axial up-pumping impellers: Modelling and measurements. Chem. Eng. Sci. 55: 5881–5896

    Google Scholar 

  • Wan J, Wang X Z and Ma C Y 2009 Particle shape manipulation and optimization in cooling crystallization involving multiple crystal morphological forms. AIChE J. 55(8): 2049–2061

    Google Scholar 

  • Wei H and Garside J 1997 Application of CFD modeling to precipitation systems. Chem. Eng. Res. Des. 75a: 219

  • Wei H Y, Zhou W and Garside J 2001 Computational fluid dynamics modeling of the precipitation process in a semibatch crystallizer. Ind. Eng. Chem. Res. 40: 5255–5261

    Google Scholar 

  • Widenski D J, Abbas A and Romagnoli J A 2010 Comparison of different solubility equations for modeling in cooling crystallization. Chem. Eng. Process. 49: 1284–1297

    Google Scholar 

  • Winn D and Doherty M F 2000 Modeling crystal shapes of organic materials grown from solution. AIChE J. 46: 1348–1367

    Google Scholar 

  • Witkowski W R, Miller S M and Rawlings J B 1990 Light-scattering measurements to estimate kinetic parameters for crystallization. ACS Symp. Ser. 438: 102–114

    Google Scholar 

  • Witkowski W R and Rawlings J B 1987 Modelling and control of crystallizers. In: Proc. of the American Control Conf. Piscataway, New Jersey: IEEE Press, pp. 1400–1405

  • Woo X Y, Tan R B H, Chow P S and Braatz R D 2006 Simulation of mixing effects in anti-solvent crystallization using a coupled CFD-PDF-PBE approach. Cryst. Growth Des. 6(6): 1291–1303

    Google Scholar 

  • Worlitschek J 2003 Monitoring, modeling and optimization of batch cooling crystallization, http://books.google.co.in/books?id=3VMYmwEACAAJ

  • Worlitschek J and Mazzotti M 2004 Model-based optimization of particle size distribution in batch-cooling crystallization of paracetamol. Cryst. Growth. Des. 4: 891–903

    Google Scholar 

  • Yang J, McCoy B J and Madras G 2005 Distribution kinetics of polymer crystallization and Avrami equation. J. Chem. Phys. 122(6): 064901C1–10

    Google Scholar 

  • Yang G, Kutanen M, Sha Z and Kallas J 2006 Determination of operating conditions for controlled batch cooling crystallization. Chem. Eng. Technol. 29(2): 200–205

    Google Scholar 

  • Zauner R and Jones A G 2002 On the influence of mixing on crystal precipitation processes—application of the segregated feed model. Chem. Eng. Sci. 57: 821–831

    Google Scholar 

  • Zhou G X, Fujiwara M, Woo X Y, Rusli E, Tung H H, Starbuck C, Davidson O, Ge Z and Braatz R D 2006 Direct design of pharmaceutical anti-solvent crystallization through concentration control. Cryst. Growth. Des. 6(4): 892–898

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SREEPRIYA VEDANTAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

VEDANTAM, S., RANADE, V.V. Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects. Sadhana 38, 1287–1337 (2013). https://doi.org/10.1007/s12046-013-0195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-013-0195-4

Keywords

Navigation