Skip to main content
Log in

On some ternary pure exponential diophantine equations with three consecutive positive integers bases

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

By using the lower bound of linear forms in two logarithms of Laurent (Acta Arith. 133(4) (2008) 325–348), we give here a new solution that the ternary pure exponential diophantine equation \((n+1)^{x}+(n+2)^{y}=n^{z}\) has no positive integer solutions except for \((n,x,y,z)=(3,1,1,2)\). This proof is very different from Le (J. Yulin Teachers College 28(3) (2007) 1–2), in which he used the classification method of solutions of exponential decomposition form equation. Furthermore, we solved completely another similar ternary pure exponential diophantine equation \(n^{x}+(n+2)^{y}=(n+1)^{z}\) by using m-adic estimation of linear forms due to Bugeaud (Compos. Math. 132(2) (2002) 137–158).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bugeaud Y, Linear forms in two \(m\)-adic logarithms and applications to diophantine problems, Compositio Math. 132(2) (2002) 137–158

    Article  MathSciNet  Google Scholar 

  2. Cao Z-F, A note on the diophantine equation \(a^x+b^y=c^z\), Acta Arith. 91(1) (1999) 85–93

    Article  MathSciNet  Google Scholar 

  3. Gel’fond A O, Sur la divisibilité de la différence des puissances de deux nombres entiers parune puissance d’un idéal premier, Mat. Sb. 7(1) (1940) 7–25

    Google Scholar 

  4. Guy R K, Unsolved problems in number theory, third edition (2004) (New York: Springer)

    Book  Google Scholar 

  5. He B and Togbé A, The exponential Diophantine equation \(n^{x}+(n+1)^{y}=(n+2)^{z}\) revised, Glasgow Math. J. 51(3) (2009) 659–667

    Article  MathSciNet  Google Scholar 

  6. Ivorra W, Sur les équation \(x^{p}+2^{\beta }y^{p}=z^{2}\) et \(x^{p}+2^{\beta }y^{p}=2z^{2}\), Acta Arith. 108(4) (2003) 327–338

    Article  MathSciNet  Google Scholar 

  7. Jeśmanowicz L, Several remarks on Pythagorean numbers, Wiadom. Mat. 1(2) (1955–56) 196–202 (in Polish)

  8. Laurent M, Linear forms in two logarithms and interpolation determinants, II, Acta Arith. 133(4) (2008) 325–348

    Article  MathSciNet  Google Scholar 

  9. Laurent M, Mignotte M and Nesterenko Y, Formes linéaires en deux logarithmes et déterminants d’interpolation, J. Number Theory 55(2) (1995) 285–321

    Article  MathSciNet  Google Scholar 

  10. Le M-H, A conjecture concerning the exponential Diophantine equation \(a^x+b^y=c^z\), Acta Arith. 106(4) (2003) 345–353

    Article  MathSciNet  Google Scholar 

  11. Le M-H, Some exponential Diophantine equation I: The equation \(D_{1}x^{2}-D_{2}y^{2}=\lambda k^{z}\), J. Number Theory 55(2) (1995) 209–221

    Article  MathSciNet  Google Scholar 

  12. Le M-H, On the exponential Diophantine equation \((n+1)^{x}+(n+2)^{y}=n^{z}\), J. Yulin Teachers College 28(3) (2007) 1–2 (in Chinese)

    Google Scholar 

  13. Le M-H, On the exponential Diophantine equation \(n^{x}+(n+2)^{y}=(n+1)^{z}\), J. Zhoukou Normal University 24(2) (2007) 1–3 (in Chinese)

    Google Scholar 

  14. Le M-H, On the Diophantine equation \(n^{x}+(n+1)=(n+2)^{z}\), J. Qujing Normal University 28(6) (2009) 1–3 (in Chinese)

    Google Scholar 

  15. Leszczyński B, The equation \(n^{x}+(n+1)^{y}=(n+2)^{z}\), Wiadom. Mat. (2) 3 (1959) 37–39

    MathSciNet  MATH  Google Scholar 

  16. Liang M and Le M-H, On the Diophantine equation \((n+1)+(n+2)^{y}=n^{z}\), Pure Appl. Math. 24(4) (2008) 736–741 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  17. Mahler K, Zur Approximation algebraischer Zahlen I: Über den grössten Primteiler binären Formen, Math. Ann. 107 (1933) 691–730

    Article  MathSciNet  Google Scholar 

  18. Makowski A, On the equation \(n^{x}+(n+1)^{y}=(n+2)^{z}\), Wiadom. Mat. (2) 9 (1967) 221–224

    MathSciNet  Google Scholar 

  19. Mihǎilescu P, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004) 167–195

    MathSciNet  MATH  Google Scholar 

  20. Sierpiński W, On the equation \(3^{x}+4^{y}=5^{z}\), Wiadom. Mat. (2) 1 (1955–56) 194–195 (in Polish)

  21. Siksek S, On the Diophantine equation \(x^{2}=y^{p}+2^{k}z^{p}\), J. de Théorie des Nombres de Bordeaux 15(1) (2003) 839–846

    Article  MathSciNet  Google Scholar 

  22. Terai N, The Diophantine equation \(a^x+b^y=c^z\), Proc. Japan Acad. 70A(2) (1994) 22–26

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Yuri Bilu for fixing (3.13). The second and fourth authors were supported by China National Nature Foundation (Grant Nos 11301363 and 11501477), The Science Fund of Fujian Province (Grant No. 2015J01024), the Fundamental Research Funds for the Central University (Grant No. 2072017001) and the Sichuan Provincial Scientific Research and Innovation Team in Universities (No. 14TD0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Zhu.

Additional information

Communicating Editor: B Sury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, R., He, B., Yang, H. et al. On some ternary pure exponential diophantine equations with three consecutive positive integers bases . Proc Math Sci 129, 26 (2019). https://doi.org/10.1007/s12044-019-0468-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-019-0468-x

Keywords

2010 Mathematics Subject Classification

Navigation