Skip to main content
Log in

Properties of light flavour baryons in hypercentral quark model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The light flavour baryons are studied within the quark model using the hypercentral description of the three-body system. The confinement potential is assumed as hypercentral Coulomb plus power potential (hCPP ν ) with power index ν. The masses and magnetic moments of light flavour baryons are computed for different power indices, ν, starting from 0.5 to 1.5. The predicted masses and magnetic moments are found to attain a saturated value with respect to variation in ν beyond the power index ν > 1.0. Further, we computed transition magnetic moments and radiative decay width of light flavour baryons. The results are in good agreement with the known experimental as well as other theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group: C Amsler et al, Phys. Lett. B667, 1 (2008)

    Google Scholar 

  2. M Kotulla et al, Phys. Rev . Lett. 89, 272001 (1991)

    Article  Google Scholar 

  3. A Bosshard et al, Phys. Rev . D44, 1962 (1991)

    ADS  Google Scholar 

  4. Particle Data Group: W M Yao et al, J. Phys. G33, 1 (2006) and references therein

    ADS  Google Scholar 

  5. D B Leinweber et al, Phys. Rev . D48, 2230 (1993)

    Article  ADS  Google Scholar 

  6. E Kaxiras et al, Phys. Rev . D32, 695 (1985) and references therein

    Article  ADS  Google Scholar 

  7. S Capstick, Phys. Rev . D46, 1965 (1992)

    ADS  Google Scholar 

  8. M N Butler, M J Savage and R P Springer, Nucl. Phys. B399, 69 (1993)

    Article  ADS  Google Scholar 

  9. T M Aliev and A Ozpineci, Nucl. Phys. B732, 291 (2006)

    Article  ADS  Google Scholar 

  10. T M Aliev, K Azizi and A Ozpineci, Phys. Rev . D79, 056005 (2009)

    ADS  Google Scholar 

  11. M Bagchi, S Daw, M Dey and J Dey, Europhys. Lett. 75, 548 (2006)

    Article  ADS  Google Scholar 

  12. T M Aliev and A Ozpineci, Phys. Rev . D62, 053012 (2000)

    ADS  Google Scholar 

  13. Frank X Lee, Phys. Rev . D57, 1801 (1998)

    Article  Google Scholar 

  14. D B Leinweber, T Draper and R M Woloshyn, Phys. Rev . D46, 3067 (1992)

    ADS  Google Scholar 

  15. I C Cloet, D B Leinweber and A W Thomas, Phys. Lett. B563, 157 (2003)

    Google Scholar 

  16. I C Cloet, D B Leinweber and A W Thomas, arXiv:nucl-th/0211027

  17. L S Geng, J Martin Camalich and M J Vicente Vacas, Chin. Phys. C33, X (2009), arXiv:hep-ph/1001.0465

  18. M N Butler, M J Savage and R P Springer, Phys. Rev . D49, 3459 (1994)

    ADS  Google Scholar 

  19. Meissner and S Steininger, Nucl. Phys. B499, 349 (1997)

    Article  ADS  Google Scholar 

  20. P Ha and L Durand, Phys. Rev . D58, 093008 (1998)

    ADS  Google Scholar 

  21. S J Puglia and M J Ramsay, Phys. Rev . D62, 034010 (2000)

    ADS  Google Scholar 

  22. F Schlumpf, Phys. Rev . D48, 4478 (1993)

    ADS  Google Scholar 

  23. K T Chao, Phys. Rev . D41, 920 (1990)

    Article  ADS  Google Scholar 

  24. P Ha and L Durand, Phys. Rev . D58, 093008 (1998)

    ADS  Google Scholar 

  25. Frank X Lee, Phys. Lett. B419, 14 (1998)

    Google Scholar 

  26. Lai Wang and Frank X Lee, Phys. Rev . D78, 013003 (2008)

    ADS  Google Scholar 

  27. H C Kim, M Praszalowicz, K Goeke, Phys. Rev . D57, 2859 (1998)

    Article  ADS  Google Scholar 

  28. H C Kim, M Praszalowicz, Phys. Lett. B585, 99 (2004)

    Google Scholar 

  29. Harleen Dahiya, Neetika Sharma and P K Chatley, arXiv:hep-ph/0912.5256v1

  30. S T Hong and G E Brown, Nucl. Phys. A580, 408 (1994)

    Article  Google Scholar 

  31. M I Krivoruchenko, Sov . J. Nucl. Phys. A45, 109 (1987)

    Google Scholar 

  32. D B Leinweber, T Draper and R M Woloshyn, Phys. Rev . D46, 3067 (1992)

    ADS  Google Scholar 

  33. B Patel, A K Rai and P C Vinodkumar, J. Phys. G35, 065001 (2008)

    Article  Google Scholar 

  34. B Patel, A Majethiya and P C Vinodkumar, Pramana – J. Phys. 72, 679 (2009)

    Article  ADS  Google Scholar 

  35. N Isgur and G Karl, Phys. Rev . D18, 4187 (1978); 2653 (1979); D20, 1191 (1979); Phys. Lett. B72, 109 (1977); B74, 353 (1978)

  36. S Godfrey et al, Phys. Rev . D32, s (1985)

  37. S Capstick and N Isgur, Phys. Rev . D34, 2809 (1986)

    Article  ADS  Google Scholar 

  38. H Dahiya and M Gupta, Phys. Rev . D67, 114015 (2003) M Gupta and Navjot Kaur, Phys. Rev . D28, 534 (1983) J Singh and M Gupta, J. Phys. G16, L45 (1990)

  39. M V N Murthy, Z. Phys. C: Particles and Fields 31, 81 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  40. W Roberts and M Pervin, arXiv:hep-ph/0711.2492v1

  41. H Garcilazo, J Vijande and A Valcarce, J. Phys. G34, 961 (2007)

    Article  Google Scholar 

  42. R Bijker, F Iachello and A Leviatan, Ann. Phys. 284, 89 (2000)

    Article  ADS  Google Scholar 

  43. E Santopinto, F Lachello and M M Giannini, Eur. Phys. J. A1, 307 (1998)

    Article  ADS  Google Scholar 

  44. A Majethiya, B Patel and P C Vinodkumar, Eur. Phys. J. A42, 213 (2009)

    Article  ADS  Google Scholar 

  45. Sameer M Ikhdair and Ramazan Sever, Int. J. Mod. Phys. A21, 3989 (2006); 18, 4215 (2003); 19, 1771 (2004); 21, 2190 (2006)

  46. K Heikkila, N A Tornquist and S Ono, Phys. Rev . D29, 110 (1984)

    ADS  Google Scholar 

  47. X T Song, J. Phys. G17, 49 (1991)

    Article  ADS  Google Scholar 

  48. J G Contreras, R Huerta and L R Quintero, Rev ista Mexicana de Fisica 50, 490 (2004)

    ADS  Google Scholar 

  49. Rohit Dhir and R C Verma, Eur. Phys. J. A42, 243 (2009)

    Article  ADS  Google Scholar 

  50. Lang Yu et al, Phys. Rev . D66, 033010 (2002) and references therein

    Google Scholar 

  51. Phuoc Ha, J. Phys. G35, 075006 (2008)

    Article  Google Scholar 

  52. Mariaaline B Do Vale et al, Rev ista Brasileira de Fisica 16, 4 (1986)

    Google Scholar 

  53. J Franklin, Phys. Rev . D73, 114001 (2006)

    Google Scholar 

  54. M Bae and J A McGovern, J. Phys. G22, 199 (1996)

    Article  ADS  Google Scholar 

  55. S K Gupta and S B Khadkikar, Phys. Rev . D36, 307 (1987)

    ADS  Google Scholar 

  56. J Dai, R Dashen, E Jenkins and A V Manohar, Phys. Rev . D53, 273 (1996)

    ADS  Google Scholar 

  57. B O Kerbikov and Yu A Simonov, Phys. Rev . D62, 093016 (2000)

    ADS  Google Scholar 

  58. J W Bos et al, Chin. J. Phys. 35, 2 (1997)

    Google Scholar 

  59. K Azizi, Eur. Phys. J. C61, 311 (2009)

    Article  ADS  Google Scholar 

  60. Lang Yu et al, Phys. Rev . D73, 114001 (2006)

    Google Scholar 

  61. S T Hong, Phys. Rev . D76, 094029 (2007)

    ADS  Google Scholar 

  62. S Eidelman et al, Phys. Lett. B592, 1 (2004)

    Google Scholar 

  63. J Colas et al, Nucl. Phys. B91, 253 (1975)

    Article  ADS  Google Scholar 

  64. T S Mast et al, Phys. Rev . Lett. 21, 1715 (1968)

    Article  ADS  Google Scholar 

  65. V V Molchanov et al, Phys. Lett. B590, 161 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KAUSHAL THAKKAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

THAKKAR, K., PATEL, B., MAJETHIYA, A. et al. Properties of light flavour baryons in hypercentral quark model. Pramana - J Phys 77, 1053–1067 (2011). https://doi.org/10.1007/s12043-011-0202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0202-4

Keywords

PACS

Navigation