Skip to main content
Log in

Present and future strategies for neutrinoless double beta decay searches

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The renewed interest shown in these days towards neutrinoless double beta decay, a lepton number violating process which can take place only if neutrinos are Majorana particles (ν = \( \bar \nu \)) with a nonvanishing mass, is justified by the fact that the Majorana nature of neutrinos is expected in many theories beyond the Standard Model. We also now know, thanks to the neutrino oscillation experiments, that neutrinos are in fact massive, as expected in these theories and not requested in the Standard Model. Moreover, since neutrino oscillation experiments measure only the absolute value of the difference of the square of the neutrino masses, the discovery of neutrinoless double beta decay would help to disentangle questions that still remain unsolved: what is the absolute mass scale of the neutrinos and which mass hierarchy (normal, inverted or quasi-degenerate) is the correct one?

The scope of this paper is not only to review the present results reached in the field by the different groups and technologies worldwide, but also to illustrate and comment on the (near and long-term) future strategies that experimentalists are trying to pursue to reach the needed sensitivity required to explore the inverted hierarchy neutrino mass scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Goeppert-Mayer, Phys. Rev. 48, 512 (1935)

    Article  MATH  ADS  Google Scholar 

  2. E Fermi, Zeits. Phys. 88, 161 (1934)

    Article  MATH  ADS  Google Scholar 

  3. W H Furry, Phys. Rev. 56, 1184 (1939)

    Article  MATH  ADS  Google Scholar 

  4. E Majorana, Nuovo Cimento 14, 171 (1937)

    Article  MATH  Google Scholar 

  5. H Georgi and S L Glashow, Phys. Rev. Lett. 32, 438 (1974), and many others after them

    Article  ADS  Google Scholar 

  6. S R Elliott, A A Hahn and M K Moe, Phys. Rev. Lett. 59, 2020 (1987)

    Article  ADS  Google Scholar 

  7. SNO Collaboration: B Aharmim et al, Phys. Rev. Lett. 101, 111301 (2008) and references therein

    Article  ADS  Google Scholar 

  8. A Strumia and F Vissani, Nucl. Phys. B726, 294 (2005). Many other studies can be found in literature

    Article  ADS  Google Scholar 

  9. A good, recent, both experimental and theoretical review on DBD can be found in: F T Avignone III, S R Elliott and J Engel, Rev. Mod. Phys. 80, 481 (2008)

    Article  ADS  Google Scholar 

  10. A good way to get up-to-date on the present situation on NME calculations and on some experiments is to peep into the MEDEX09 conference proceedings: Workshop on Circulation of Double-Beta-Decay-Matrix, Prague, Czech Republic, 15–19 June 2009, edited by O Civitarese, I Stekl and J Suhonen, AIP Conf. Proc., Vol. 1180 (2010)

  11. V I Tretyak and Y G Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002)

    Article  ADS  Google Scholar 

  12. Y Zdesenko, Rev. Mod. Phys. 74, 663 (2002)

    Article  ADS  Google Scholar 

  13. Yu G Zdesenko, F A Danevich and V I Tretyak, J. Phys. G: Nucl. Part. Phys. 30, 971 (2004)

    Article  ADS  Google Scholar 

  14. S R Elliott and J Engel, J. Phys. G: Nucl. Part. Phys. 30, R183R215 (2004)

    Article  Google Scholar 

  15. H V Klapdor-Kleingrothaus and I V Krivosheina, Mod. Phys. Lett. A21, 1547 (2006) and references therein

    ADS  Google Scholar 

  16. R Arnold et al, Nucl. Instrum. Methods A536, 79 (2005) R Arnold et al, Phys. Rev. Lett. 95, 182302 (2005) J Argyriades et al, arXiv:0906.2694v3 [nucl-ex] and references therein

    Google Scholar 

  17. V I Tretyak, to appear in MEDEX09 conference proceedings: Workshop on Circulation of Double-Beta-Decay-Matrix, Prague, Czech Republic, 15–19 June 2009, edited by O Civitarese, I Stekl and J Suhonen, AIP Conf. Proc., Vol. 1180 (2010)

  18. F Simkovic, A Faessler, V Rodin, P Vogel and J Engel, Phys. Rev. C77, 045503 (2008)

    ADS  Google Scholar 

  19. J Barea and F Iachello, Phys. Rev. C79, 044301 (2009)

    ADS  Google Scholar 

  20. J Menendez, A Poves, E Caurier and F Nowacki, Phys. Rev. C80, 048501 (2009)

    ADS  Google Scholar 

  21. E-W Grewe et al, Phys. Rev. C78, 044301 (2008)

    ADS  Google Scholar 

  22. R S Raghavan, Phys. Rev. Lett. 72, 1411 (1994) B Caccianiga and M Giammarchi, Astropart. Phys. 15, 14 (2000)

    Article  ADS  Google Scholar 

  23. S R Elliott and P Vogel, Ann. Rev. Nucl. Part. Sci. 52, 115 (2002)

    Article  ADS  Google Scholar 

  24. L Gironi, C Arnaboldi, S Capelli, O Cremonesi, G Pessina, S Pirro and M Pavan, Opt. Mat. 31, 1388 (2009)

    Article  Google Scholar 

  25. P N Luke, F S Goulding, N W Madden and R H Pehl, IEEE Trans. Nucl. Sci. 36, 926 (1989) P S Barbeau, J I Collar and O Tench, J. Cosm. Astrop. Phys. 9, 9 (2007)

    Article  ADS  Google Scholar 

  26. M K Moe, Phys. Rev. C44, R931 (1991) M Danilov et al, Phys. Lett. B480, 12 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Brofferio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brofferio, C. Present and future strategies for neutrinoless double beta decay searches. Pramana - J Phys 75, 271–280 (2010). https://doi.org/10.1007/s12043-010-0115-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0115-7

Keywords

Navigation