Skip to main content
Log in

The see-saw mechanism: Neutrino mixing, leptogenesis and lepton flavour violation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix, we consider reconstructing the see-saw mechanism. Indirect tests of see-saw are leptogenesis and lepton flavour violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M C Gonzalez-Garcia and M Maltoni, arXiv:0704.1800 [hep-ph]

  2. P F Harrison, D H Perkins and W G Scott, Phys. Lett. B530, 167 (2002)

    ADS  Google Scholar 

  3. Z Z Xing, Phys. Lett. B533, 85 (2002)

    ADS  Google Scholar 

  4. X G He and A Zee, Phys. Lett. B560, 87 (2003)

    ADS  Google Scholar 

  5. C H Albright and M C Chen, Phys. Rev. D74, 113006 (2006)

    Google Scholar 

  6. P Minkowski, Phys. Lett. B67, 421 (1977)

    Google Scholar 

  7. T Yanagida, in Proceedings of the Workshop on The Unified Theory and the Baryon Number in the Universe edited by O Sawada and A Sugamoto (KEK, Tsukuba, Japan, 1979) p. 95

    Google Scholar 

  8. S L Glashow, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons edited by M Lévy, J.-L. Basdevant, D Speiser, J Weyers, R Gastmans and M Jacob (Plenum Press, New York, 1980) p. 687

    Google Scholar 

  9. M Gell-Mann, P Ramond and R Slansky, in Supergravity edited by P van Nieuwenhuizen and D Z Freedman (North Holland, Amsterdam, 1979)

    Google Scholar 

  10. R N Mohapatra and G Senjanović, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  11. S Davidson and A Ibarra, J. High Energy Phys. 0109, 013 (2001)

    Article  ADS  Google Scholar 

  12. J R Ellis and M Raidal, Nucl. Phys. B643, 229 (2002)

    Article  ADS  Google Scholar 

  13. S Pascoli, S T Petcov and W Rodejohann, Phys. Rev. D68, 093007 (2003)

    Google Scholar 

  14. G C Branco et al, Nucl. Phys. B640, 202 (2002)

    Article  ADS  Google Scholar 

  15. E K Akhmedov, M Frigerio and A Y Smirnov, J. High Energy Phys. 0309, 021 (2003)

    Article  ADS  Google Scholar 

  16. X d Ji, Y c Li, R N Mohapatra, S Nasri and Y Zhang, Phys. Lett. B651, 195 (2007)

    ADS  Google Scholar 

  17. C H Albright and M C Chen, arXiv:0802.4228 [hep-ph]

  18. J A Casas and A Ibarra, Nucl. Phys. B618, 171 (2001)

    Article  ADS  Google Scholar 

  19. F Borzumati and A Masiero, Phys. Rev. Lett. 57, 961 (1986)

    Article  ADS  Google Scholar 

  20. J Hisano, T Moroi, K Tobe and M Yamaguchi, Phys. Rev. D53, 2442 (1996)

    ADS  Google Scholar 

  21. S T Petcov, S Profumo, Y Takanishi and C E Yaguna, Nucl. Phys. B676, 453 (2004)

    Article  ADS  Google Scholar 

  22. A Y Smirnov, arXiv:hep-ph/0402264

  23. M Raidal, Phys. Rev. Lett. 93, 161801 (2004)

    Google Scholar 

  24. H Minakata and A Y Smirnov, Phys. Rev. D70, 073009 (2004)

    Google Scholar 

  25. K A Hochmuth and W Rodejohann, Phys. Rev. D75, 073001 (2007)

    Google Scholar 

  26. M Fukugita and T Yanagida, Phys. Lett. B174, 45 (1986)

    ADS  Google Scholar 

  27. For a recent review, see S Davidson, E Nardi and Y Nir, arXiv:0802.2962 [hep-ph]

  28. A Abada et al, J. Cosmol. Astropart. Phys. 0604, 004 (2006)

    Article  ADS  Google Scholar 

  29. E Nardi, Y Nir, E Roulet and J Racker, J. High Energy Phys. 0601, 164 (2006)

    Article  ADS  Google Scholar 

  30. F X Josse-Michaux and A Abada, J. Cosmol. Astropart. Phys. 0710, 009 (2007)

    Article  ADS  Google Scholar 

  31. S Antusch, S F King and A Riotto, J. Cosmol. Astropart. Phys. 0611, 011 (2006)

    Article  ADS  Google Scholar 

  32. Recent overviews are S Blanchet and P Di Bari, Nucl. Phys. Proc. Suppl. 168, 372 (2007)

    Article  ADS  Google Scholar 

  33. S Davidson, arXiv:0705.1590 [hep-ph]

  34. See also R Barbieri, P Creminelli, A Strumia and N Tetradis, Nucl. Phys. B575, 61 (2000)

    Article  ADS  Google Scholar 

  35. S Blanchet and P Di Bari, J. Cosmol. Astropart. Phys. 0703, 018 (2007)

    Article  ADS  Google Scholar 

  36. A Anisimov, S Blanchet and P Di Bari, arXiv:0707.3024 [hep-ph]

  37. S Pascoli, S T Petcov and A Riotto, Phys. Rev. D75, 083511 (2007)

    Google Scholar 

  38. G C Branco, R Gonzalez Felipe and F R Joaquim, Phys. Lett. B645, 432 (2007)

    ADS  Google Scholar 

  39. S Davidson, J Garayoa, F Palorini and N Rius, Phys. Rev. Lett. 99, 161801 (2007)

    Google Scholar 

  40. G C Branco, T Morozumi, B M Nobre and M N Rebelo, Nucl. Phys. B617, 475 (2001)

    Article  ADS  Google Scholar 

  41. See e.g W Buchmüller, P Di Bari and M Plümacher, Ann. Phys. 315, 305 (2005)

    Article  MATH  ADS  Google Scholar 

  42. G F Giudice, A Notari, M Raidal, A Riotto and A Strumia, Nucl. Phys. B685, 89 (2004)

    Article  ADS  Google Scholar 

  43. S Davidson and A Ibarra, Phys. Lett. B535, 25 (2002)

    ADS  Google Scholar 

  44. S T Petcov, W Rodejohann, T Shindou and Y Takanishi, Nucl. Phys. B739, 208 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Rodejohann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodejohann, W. The see-saw mechanism: Neutrino mixing, leptogenesis and lepton flavour violation. Pramana - J Phys 72, 217–227 (2009). https://doi.org/10.1007/s12043-009-0018-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0018-7

Keywords

PACS Nos

Navigation