Skip to main content
Log in

Microwave dielectric characterization of binary mixture of formamide with N, N-dimethylaminoethanol

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Dielectric relaxation measurements of formamide (FMD)-N,N-dimethylaminoethanol (DMAE) solvent mixtures have been carried out over the entire concentration range using time domain reflectometry technique at 25, 35 and 45°C in the frequency range of 10 MHz to 20 GHz. The mixtures exhibit a principle dispersion of the Davidson-Cole relaxation type at microwave frequencies. Bilinear calibration method is used to obtain complex permittivity ɛ*(ω) from complex reflection coefficient ρ*(ω) over the frequency range of 10 MHz to 10 GHz. The excess permittivity (ɛ E), excess inverse relaxation time (1/τ)E, Kirkwood correlation factor (g eff), activation energy and Bruggeman factor (f B) are also calculated to study the solute-solvent interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Gabriel, S Gabriel, E H Grant, B S J Halstead and D M P Mingos, Chem. Soc. Rev. 27, 213 (1998)

    Article  Google Scholar 

  2. C Kuang and S O Nelson, J. Microw Pow. And E M Energy 32, 114 (1997)

    Google Scholar 

  3. R H Fattepur, M T Hosamani, D K Deshpande and S C Mehrotra, J. Chem. Phys. 101, 9956 (1994)

    Article  ADS  Google Scholar 

  4. A C Kumbharkhane, S M Puranik and S C Mehrotra, J. Sol. Chem. 22, 219 (1993)

    Article  Google Scholar 

  5. P Firman, M Marchetti, M Eyrin, E M Xu and S J Petrucci, Phys. Chem. 95, 7055 (1991)

    Article  Google Scholar 

  6. S P Patil, A S Chaudhari, M P Lokhande, M K Lande, A G Shankarwar, S N Helambe, B R Arbad and S C Mehrotra, J. Chem. Eng. Data 44, 875 (1999)

    Article  Google Scholar 

  7. J Z Bao, M L Swicord and C C Davies, J. Chem. Phys. 104, 4441 (1996)

    Article  ADS  Google Scholar 

  8. B M Suryavanshi and S C Mehrotra, Ind. J. Pure Appl. Phys. 29, 442 (1991)

    Google Scholar 

  9. A Choudhari, H Chaudhari and S C Mehrotra J. Chin. Chem. Soc. 49, 489 (2002)

    Google Scholar 

  10. A Chaudhari, H Chaudhari and S C Mehrotra, Fluid Phase Equilibr. 201, 107 (2002)

    Article  Google Scholar 

  11. V P Pawar and S C Mehrotra, J. Mol. Liq. 95, 63 (2002)

    Article  Google Scholar 

  12. V P Pawar, G S Raju and S C Mehrotra, Pramana — J. Phys. 592, 693 (2002)

    ADS  Google Scholar 

  13. S Ahire, A Chaudhari, M P Lokhande and S C Mehrotra, J. Sol. Chem. 27, 993 (1998)

    Article  Google Scholar 

  14. D Bertolini, M Cassettari, C Ferrari and E Tombari, J. Phys. Chem. 108, 6416 (1998)

    Article  Google Scholar 

  15. S M Puranic, A C Kumbharkhane and S C Mehrotra, Ind. J. Chem. A32, 613 (1993)

    Google Scholar 

  16. J Barthel, K Bachhuber and R Z Buchner, Naturforsch 50, 65 (1995)

    Google Scholar 

  17. A Chaudhari, N M More and S C Mehrotra, Bull. Korean Chem. Soc. 22, 357 (2001)

    Google Scholar 

  18. A Chaudhari, S Ahire and S C Mehrotra, J. Mol. Liq. 94, 17 (2001)

    Article  Google Scholar 

  19. J Lou, T A Hatton and P E Laibinis, J. Phys. Chem. A101, 5262 (1997)

    Google Scholar 

  20. J Lou, T A Hatton and P E Laibinis, J. Phys. Chem. A101, 9892 (1997)

    Google Scholar 

  21. S Mashimo, S Kuwabara, S Yogihara and K Higasi, J. Chem. Phys. 90, 3292 (1989)

    Article  ADS  Google Scholar 

  22. R H Cole, J G Berbarian, S Mashimo, G Chryssikos, A Burns and E Tombari, J. Appl. Phys. 66, 793 (1989)

    Article  ADS  Google Scholar 

  23. S M Puranik, A C Kumbharkhane and S C Mehrotra, J. Micro. Pow. and EM Energy 26, 196 (1991)

    Google Scholar 

  24. Ajay chaudhari, M K Lande, B R Arbad, D V Jahagirdar and S C Mehrotra, J. Mol. Liqs. 100/3, 207–215 (2002)

    Article  Google Scholar 

  25. S Havriliak and S Negami, J. Polym. Sci. C14, 99 (1966)

    Google Scholar 

  26. K S Cole and R H Cole, J. Chem. Phys. 9, 341 (1941)

    Article  Google Scholar 

  27. D W Davidson and R H Cole, J. Chem. Phys. 18, 1484 (1950)

    Article  Google Scholar 

  28. P Debye, Polar molecules (Chem. Catalog. Co., New York, 1929)

    MATH  Google Scholar 

  29. A Chaudhari, A Das, G Raju, H Chaudhari, P Khirade, N Narain and S C Mehrotra, Natl. Sci. Counc. ROC(A)25, 205 (2001)

    Google Scholar 

  30. M Tabellout, P Lanceleur and J R Emery, J. Chem. Soc. Farad. Trans. 86, 1493 (1990)

    Article  Google Scholar 

  31. H Frolhich, Theory of dielectrics (Oxford University Press, London, 1949)

    Google Scholar 

  32. G MouMouzlas, D K Panpoulos and G Ritzoulis, J. Chem. Eng. Data 36, 20 (1991)

    Article  Google Scholar 

  33. D A G Bruggeman, Ann. Phys. (Leipzig) 5, 636 (1935)

    ADS  Google Scholar 

  34. S M Puranik, A C Kumbharkhane and S C Mehrotra, J. Mol. Liq. 59, 173 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Undre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Undre, P., Helambe, S.N., Jagdale, S.B. et al. Microwave dielectric characterization of binary mixture of formamide with N, N-dimethylaminoethanol. Pramana - J Phys 68, 851–861 (2007). https://doi.org/10.1007/s12043-007-0083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-007-0083-8

Keywords

PACS No.

Navigation