Skip to main content

Advertisement

Log in

Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 N, 54.61 E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012–July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March–May) and summer (June–September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October–November) and winter (December–February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from −13.2 Wm−2 (∼−0.96 Wm−2) in November to −39.4 Wm−2 (−11.4 Wm−2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm−2 (November) to 28.2 Wm−2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (−85.0 ± 4.1 W m−2 τ −1) followed closely by winter (−79.2 ± 7.1 W m−2 τ −1) and the lowest values during autumn season (−54 ± 4.3 W m−2 τ −1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day −1) and the lowest in November (0.17 K day −1) and the temporal variability of this parameter is linearly associated with the aerosol absorption index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Ackerman A S, Toon O B, Stevens D E, Heymsfield A J, Ramanathan V and Welton E J 2000 Reduction of tropical cloudiness by soot; Science 288 1042–1047.

    Article  Google Scholar 

  • Alam K, Trautmann T and Blaschke T 2011 Aerosol optical properties and radiative forcing over mega-city Karachi; Atmos. Res. 101 773–782.

    Article  Google Scholar 

  • Alam K, Trautmann T, Blaschke T and Subhan F 2014 Changes in aerosol optical properties due to dust storms in the Middle East and southwest Asia; Remot. Sens. Environ. 143 216–227.

    Article  Google Scholar 

  • Angstrom A 1964 The parameters of atmospheric turbidity; Tellus 16 64–75.

    Article  Google Scholar 

  • Babu S S, Moorthy K K and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impacts at a tropical coastal station. Part 2: Direct short wave radiative forcing; Ann. Geophys. 25 2309–2320.

    Article  Google Scholar 

  • Babu S S, Nair V S and Moorthy K K 2008 Seasonal changes in aerosol characteristics over Arabian Sea and their consequence on aerosol short-wave radiative forcing: Results from ARMEX field campaign; J. Atmos. Sol.-Terr. Phys. 70 820–834. doi: http://dx.doi.org/10.1016/j.jastp.2007.10.005.

    Article  Google Scholar 

  • Beegum S N et al. 2008 Characteristics of spectral aerosol optical depths over India during ICARB; J. Earth Syst. Sci. 117 (S1) 303–313.

    Article  Google Scholar 

  • Berk A, Bernstein L S and Robertson D C 1989 MODTRAN: A Moderate Resolution Model for LOWTRAN 7, GL-TR-89-C122, AD-A214 337.

  • Bond T C and Bergstrom R W 2006 Light absorption by carbonaceous particles: An investigative review; Aerosol Sci. Technol. 41 (1) 27–47.

    Article  Google Scholar 

  • Caquineau S, Gaudichet A, Gomes L and Legrand M 2002 Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions; J. Geophys. Res. 107. doi: 10.1029/2000JD000247.

  • Charlson R J, Schwartz S E, Hales J M, Cess J A, Coakley J., Hansen J E and Hofmann D J 1992 Climate forcing by anthropogenic aerosols; Science 255 423–430.

    Article  Google Scholar 

  • Conant W C 2000 An observational approach for determining aerosol surface radiative forcing: Results from the first field phase of INDOEX; J. Geophys. Res. 105 15,347–15,360.

    Article  Google Scholar 

  • Deepshikha S, Satheesh S K and Srinivasan J 2005 Regional distribution of absorbing efficiency of dust aerosols over India and adjacent continents inferred using satellite remote sensing; Geophys. Res. Lett. 32 L03811. doi: 10.1029/2004GL022091.

    Article  Google Scholar 

  • Derimian Y, Leon J F, Dubovik O, Chiapello I, Tanre D, Sinyuk A, Auriol F, Podvin T, Brogniez G and Holben B N 2008 Radiative properties of aerosol mixture observed during the dry season 2006 over M’Bour, Senegal (African Monsoon Multidisciplinary Analysis campaign); J. Geophys. Res. 113 D00C09. doi: 10.1029/2008JD009904.

    Article  Google Scholar 

  • Dey S, Tripathi S N and Singh R P 2004 Influence of dust storm on the aerosol optical properties over Indo-Gangetic basin; J. Geophys. Res. 109 D20211. doi: 10.1029/2004JD004924.

    Article  Google Scholar 

  • Diner D J, Beckert J C, Reilly T H, Bruegge C J, Conel J E, Kahn R A, Martonchik J V, Ackerman T P, Davies R, Gerstl S A W, Gordon H R, Muller J P, Myneni R B, Sellers P J, Pinty B and Verstraete M M V 1998 Multi-angle Imaging SpectroRadiometer (MISR) – instrument description and experiment overview; IEEE Trans. Geosci. Remote Sens. 36 1072–1087.

    Article  Google Scholar 

  • di Sarra A, Di Biagio C, Meloni D, Monteleone F, Pace G, Pugnaghi S and Sferlazzo D 2011 Short–wave and longwave radiative effects of the intense Saharan dust event of 25–26 March, 2010, at Lampedusa (Mediterranean Sea); J. Geophys. Res. 116 D23209. doi: 10.1029/2011JD016238.

    Article  Google Scholar 

  • Dubovik O and King M D 2000 A flexible inversion algorithm for the retrieval of aerosol optical properties from Sun and sky radiance measurements; J. Geophys. Res. 105 20,673–20,696.

    Article  Google Scholar 

  • Dubovik O, Smirnov A and Holben B N 2000 Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky radiance measurements; J. Geophys. Res. 105 9791–9806.

    Article  Google Scholar 

  • Dubovik O, Holben B N, Eck T F, Smirnov A, Kaufman Y J, King M D, Tanré D and Slutsker I 2002 Variability of absorption and optical properties of key aerosol types observed in worldwide locations; J. Atmos. Sci. 59 590–608.

    Article  Google Scholar 

  • Dubovik O et al. 2006 Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust; J. Geophys. Res. 111 D11208. doi: 10.1029/2005JD006619.

    Article  Google Scholar 

  • Eck T F, Holben B N, Reid J S, Dubovik O, Smirnov A, O’Neill N T, Slutsker I and Kinne S 1999 Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols; J. Geophys. Res. 104 31,333–31,349.

    Article  Google Scholar 

  • Eck T F et al. 2012 Fog- and cloud-induced aerosol modification observed by the aerosol robotic network (AERONET); J. Geophys. Res. 117 D07206. doi: 10.1029/2011JD016839.

    Article  Google Scholar 

  • Esteve A R, Estellés V, Utrillas M P and Martínez-Lozano J A 2014 Analysis of the aerosol radiative forcing over a Mediterranean urban coastal site; Atmos. Res. 137 195–204.

    Article  Google Scholar 

  • Frey C M, Rigo G and Parlow E 2005 Investigation of the Daily Urban Cool Island (UCI) in two coastal cities in an arid environment: Dubai and Abu Dhabi (UAE); Remote Sens. Spat. Info. Sci. 36, Part 8/W27, 5S.

  • García O E et al. 2012 Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements; J. Geophys. Res. 113 D21207. doi: 10.1029/2008JD010211.

    Article  Google Scholar 

  • Gautier C and Landsfeld M 1997 Surface solar radiation flux and cloud radiative forcing for the atmospheric radiation measurement (ARM) Southern Great Plains (SGP): A satellite, surface observations, and radiative transfer model study; J. Atmos. Sci. 54 (10) 1290–1307.

    Article  Google Scholar 

  • Ge J M, Su J, Ackerman T P, Fu Q, Huang J P and Shi J S 2010 Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China–U.S. joint field experiment; J. Geophys. Res. 115 D00K12.

    Article  Google Scholar 

  • Geier E B, Green R N, Kratz D P, Minnis P, Miller W F, Nolan S K and Franklin C B 2001 Single satellite footprint TOA/surface fluxes and clouds (SSF) collection document; Geophysics Series No. 84, Academic Press.

  • Gherboudj I and Ghedira H 2014 Spatiotemporal assessment of dust loading over the United Arab Emirates; Int. J. Climatol. 34 (12) 3321–3335.

    Article  Google Scholar 

  • Givoni B 1969 Man, Climate and Architcture; Elsevier, Amsterdam, London.

    Google Scholar 

  • Gogoi M M, Moorthy K K, Babu S S and Bhuyan P K 2009 Climatology of columnar aerosol properties and the influence of synoptic conditions: First-time results from the northeastern region of India; J. Geophys. Res. 114 D08202.

    Article  Google Scholar 

  • Hamidi M, Kavianpour M R and Shao Y 2013 Synoptic analysis of dust storms in the Middle East; Asia-Pac. J. Atmos. Sci. 49 279–286.

    Article  Google Scholar 

  • Hansen J, Sato M and Ruedy R 1997 Radiative forcing and climate response; J. Geophys. Res. 102 6831–6864. doi: 10.1029/96JD03436.

    Article  Google Scholar 

  • Haywood J M, Roberts D L, Slingo A, Edwards J M and Shine K P 1997 General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol; J. Climate 10 1562– 1577.

    Article  Google Scholar 

  • Holben B N et al. 1998 AERONET – A federated instrument network and data archive for aerosol characterization; Remote Sens. Environ. 66 1–16.

    Article  Google Scholar 

  • Hsu N C, Herman J R and Tsay S C 2003 Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia; Geophys. Res. Lett. 30 1224.

    Google Scholar 

  • Huang J, Minnis P, Yi Y, Tang Q, Wang X, Hu Y, Liu Z, Ayers K, Trepte C and Winker D 2007 Summer dust aerosols detected from CALIPSO over the Tibetan Plateau; Geophys. Res. Lett. 34 L18805. doi: 10.1029/2007GL029938.

    Article  Google Scholar 

  • IPCC 2013 Climate Change 2013: The Physical Science Basis (eds) Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A and Xia Y, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Jeong M J, Li Z, Andrews E and Tsay S C 2007 Effect of aerosol humidification on the column aerosol optical thickness over the atmospheric radiation measurement Southern Great Plains site; J. Geophys. Res. 112 D10202.

    Article  Google Scholar 

  • Kalnay E et al. 1996 The NCEP/NCAR 40-year reanalysis project; B. Am. Meteorol. Soc. 77 (3) 437–471.

    Article  Google Scholar 

  • Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A and Holben B N 1997 Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer; J. Geophys. Res. 102 17051–17067.

    Article  Google Scholar 

  • Khoshsima M, Bidokhi A A and Ahmadi-Gavi F 2014 Variations of aerosol optical depth and Angstrom parameters at a sub-urban location in Iran during 2009–2010; J. Earth Syst. Sci. 123 (1) 187–199.

    Article  Google Scholar 

  • Kim D H, Sohn B J, Nakajima T and Takamura T 2005 Aerosol radiative forcing over east Asia determined from ground-based solar radiation measurements; J. Geophys. Res. 110 D10S22.

    Google Scholar 

  • Kim M K, Lau K M, Chin M, Kim K M, Sud Y C and Walker G K 2006 Atmospheric teleconnection over Eurasia induced by aerosol radiative forcing during boreal spring; J. Climate 19 4700–4718.

    Article  Google Scholar 

  • Kneizys F X, Shettle E P, Gallery W O, Chetwynd J H J. and Abreu L W 1983 Atmospheric transmittance/radiance: Computer code LOWTRAN6; Report No. AFGL-TR-83-0187, Air Force Geophys. Lab. Hanscom AFB, MA, 200p.

  • Koukouli M E, Balis D S, Loyola D, Valks P, Zimmer W, Hao N, Lambert J -C, Van Roozendael M, Lerot C and Spurr 2012 Geophysical validation and long-term consistency between GOME-2/MetOp-A total T2169–2181, 10.5194/amt-5-2169-2012.

  • Kubilay N, Cokacar T and Temel O 2003 Optical properties of mineral dust outbreaks over the northeastern Mediterranean; J. Geophys. Res. 108 4666.

    Article  Google Scholar 

  • Lee K H, Li Z, Wong M S, Xin J, Wang Y, Hao W M and Zhao F 2007 Aerosol single-scattering albedo estimated across China from a combination of ground and satellite measurements; J. Geophys. Res. 112 D22S15. doi: 10.1029/2007JD009077.

    Google Scholar 

  • Lelieveld J, Hoor P, Jöckel P, Pozzer A, Hadjinicolaou P, Cammas J P and Beirle S 2009 Severe ozone air pollution in the Persian Gulf region; Atmos. Chem. Phys. 9 1393–1406.

    Article  Google Scholar 

  • Levelt P F, van den Oord G H I, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O V and Saari H 2006 The ozone monitoring instrument; IEEE T. Geosci. Remote 44 1093–1101.

    Article  Google Scholar 

  • Li F, Vogelmann A M and Ramanathan V 2003 Saharan dust aerosol radiative forcing measured from space; J. Climate 17 2558–2571.

    Article  Google Scholar 

  • Liou K N 1980 An Introduction to Atmospheric Radiation; Academic Press, New York, 392p.

    Google Scholar 

  • Liou K N 2002 An Introduction to Atmospheric Radiation; second edn, Academic Press, San Diego, 583p.

    Google Scholar 

  • Lodhi N K, Beegum S N, Singh S and Kumar K 2013 Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends, and source strengths ; J. Geophys. Res. 118 1–15.

    Google Scholar 

  • Loeb N G, Smith N M, Kato S, Miller W F, Gupta S K, Minnis P and Wielicki B A 2003 Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology; J. Appl. Meteor. 42 240–265.

    Article  Google Scholar 

  • Loeb N G, Kato S, Loukachine K and Smith N M 2005 Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology; J. Atmos. Oceanic Technol. 22 338–351.

    Article  Google Scholar 

  • Lubin D, Satheesh S K, Macfarquar G and Heymsfield A 2002 The longwave radiative forcing of Indian Ocean tropospheric aerosol; J. Geophys. Res. 107 8004. doi: 10.1029/2001JD001183.

    Article  Google Scholar 

  • Mallet M, Tulet P and Serc D 2009 Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006; Atmos. Chem. Phys. 9 7143–7160.

    Article  Google Scholar 

  • Markowicz K M, Flatau P J, Remiszewska J, Witek M, Reid E A, Reid J S, Bucholtz A and Holben B 2008 Observations and modeling of the surface aerosol radiative forcing during UAE 2; J. Atmos. Sci. 65 2877–2891.

    Article  Google Scholar 

  • McArthur L J B 2005 World Climate Research Programme, Baseline Surface Radiation Network (BSRN); WCRP-121 WMO/TD-NO. 1274, http://www.bsrn.awi.de/en/other/publications/.

  • McClatchey R A, Fenn R W, Selby E G A, Volz F E and Garing J S 1972 Optical properties of the atmosphere; Rep. AFCRL-72-0497, Air Force Cambridge Res. Lab., Bedford, Mass.

  • Megaritis A G, Fountoukis C, Charalampidis P E, Denier van der Gon H A C, Pilinis C and Pandis S N 2014 Linking climate and air quality over Europe: Effects of meteorology on PM2.5 concentration; Atmos. Chem. Phys. 14 (18) 10,283–10,298. doi: 10.5194/acp-14-10283-2014.

    Article  Google Scholar 

  • Meywerk J and Ramanathan V 1999 Observations of the spectral clear-sky aerosol forcing over the tropical Indian Ocean; J. Geophys. Res. 104 24,359–24,370.

    Article  Google Scholar 

  • Miller R L and Tegen I 1998 Climate response to soil dust aerosols; J. Climate 11 3247–3267.

    Article  Google Scholar 

  • Moorthy K K, Babu S S and Satheesh S K 2005 Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season results from ARMEX field campaign; J. Atmos. Sci. 62 192–206.

    Article  Google Scholar 

  • Moorthy K K, Babu S S and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station – Part 1: Microphysical and optical properties; Ann. Geophys. 25 2293–2308.

    Article  Google Scholar 

  • Moorthy K K, Nair V S, Babu S S and Satheesh S K 2009 Spatial and vertical heterogeneities in aerosol properties over oceanic regions around India: implications for radiative forcing; Quart J. Roy. Meteorol. Soc. 135 2131–2145.

    Article  Google Scholar 

  • Naddafi K, Hassanvand M S, Yunesian M and Momeniha F 2012 Environmentl health impact assessment of air pollution in megacity of Tehran, Iran; J. Environ. Health Sci. Eng. 9 1–7.

    Article  Google Scholar 

  • Nakajima T, Hayasaka T, Higurashi A, Hashida G, Moharram-Nejab N, Najafi Y and Valavi H 1996 Aerosol optical properties in the Iranian region obtained by ground-based solar radiation measurements in the summer of 1991; J. Appl. Meteorol. 35 1265–1278.

    Article  Google Scholar 

  • O’Neill N T, Dubovic O and Eck T F 2001 Modified Angstrom exponent for the characterization of submicrometer aerosols; Appl. Optics 40 (15) 2368–2375.

    Article  Google Scholar 

  • O’Neill N T, Eck T F, Smirnov A, Holben B N and Thulasiraman S 2003 Spectral discrimination of coarse and fine mode optical depth; J. Geophys. Res. 108 4559.

    Article  Google Scholar 

  • Oliver J E and Hidore J J 1984 Climatology: An introduction; Nature 381p.

  • Ouarda T B M J, Charron C, Niranjan Kumar K, Marpu P R, Ghedira H, Molini A and Khayal I 2014 Evolution of the rainfall regime in the United Arab Emirates ; J. Hydrol. 514 258–270.

    Article  Google Scholar 

  • Pandithurai G, Dipu S, Dani K K, Tiwari S, Bisht D S, Devara P C S and Pinker R T 2008 Aerosol radiative forcing during dust events over New Delhi, India; J. Geophys. Res. 113 D13209.

    Article  Google Scholar 

  • Parajuli S, Gherboudj I and Ghedira H 2013 The effect of soil moisture and wind speed on aerosol optical thickness retrieval in a desert environment using SEVIRI thermal channels; Int. J. Remote Sens. 34 (14) 5054–5071.

    Article  Google Scholar 

  • Pérez-Ramírez D, Whiteman D N, Smirnov A, Lyamani H, Holben B N, Pinker R, Andrade M and Alados-Arboledas L 2014 Evaluation of AERONET precipitable water vapour versus micro-wave radiometry, GPS, and radiosondes at ARM sites; J. Geophys. Res. Atmos. 119 9596–9613, doi: 10.1002/2014JD021730.

    Article  Google Scholar 

  • Prasad A K, Singh S, Chauhan S S, Srivastava M K, Singh R P and Singh R 2007 Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms; Atmos. Environ. 41 (29) 6289–6301.

    Article  Google Scholar 

  • Prospero J M, Charlson R J, Mohnen V, Jaenicke R, Delany A C, Moyers J, Zoller W and Rahn K 1983 The atmospheric aerosol system: An overview; Rev. Geophys. 21 1607. doi: 10.1029/RG021i007p01607.

    Article  Google Scholar 

  • Prospero J M, Ginoux P, Torres O and Nicholson S E 2002 Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product; Rev. Geophys. 40 1–31.

    Article  Google Scholar 

  • Rajeev K and Ramanathan V 2001 Direct observations of clear-sky aerosol radiative forcing from space during the Indian Ocean Experiment; J. Geophys. Res. 106 (D15) 17,221–17,235. doi: 10.1029/2000JD900723.

    Article  Google Scholar 

  • Ramanathan V et al. 2001 Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze; J. Geophys. Res. 106 28,371–28,398.

    Article  Google Scholar 

  • Ramanathan V, Li F, Ramana M V, Praveen P S, Kim D, Corrigan C E, Nguyen H, Stone S. J J, Carmichael G R, Adhikary B and Yoon S C 2007 Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing; J. Geophys. Res. 112 D22S21.

    Article  Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C and Sowle D 1988 SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere; B. Am. Meteorol. Soc. 79 2101–2114.

    Article  Google Scholar 

  • Rodríguez S, Alastuey A, Alonso-Pérez S, Querol X, Cuevas E, Abreu-Afonso J, Viana M, Pandolfi M and de la Rosa J 2011 Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer; Atmos. Chem. Phys. Discuss. 11 8841–8892.

    Article  Google Scholar 

  • Sabbah I and Hasan F M 2008 Remote sensing of aerosols over the Solar Village, Saudi Arabia; Atmos. Res. 90 170–179.

    Article  Google Scholar 

  • Saha A, Mallet M, Roger J C, Dubuisson P, Piazzola J and Despiau S 2008 One year measurements of aerosol optical properties over an urban coastal site: Effect on local direct radiative forcing; Atmos. Res. 90 195–202. doi: 10.1016/j.atmosres.2008.02.003.

    Article  Google Scholar 

  • Satheesh S K 2002 Radiative forcing by aerosols over Bay of Bengal region; Geophys. Res. Lett. 29 (22) 2083. doi: 10.1029/2002GL015334.

    Google Scholar 

  • Satheesh S K and Ramanathan V 2000 Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface; Nature 405 60–63.

    Article  Google Scholar 

  • Satheesh S K and Krishnamoorthy K 2005 Radiative effects of natural aerosols: A review; Atmos. Environ. 39 2089–2110.

    Article  Google Scholar 

  • Satheesh S K, Ramanathan V, Li-Jones X, Lobert J M, Podgorny I A, Prospero J M, Holben B N and Loeb N G 1999 A model for the natural and anthopogenic aerosols over the tropical Indian Ocean derived from Indian Ocean experiment data; J. Geophys. Res. 104 27,421–27,440.

    Article  Google Scholar 

  • Satheesh S K, Deepshikha S and Srinivasan J 2006 Impact of dust aerosols on earth–atmosphere clear-sky albedo and its short wave radiative forcing over African and Arabian regions; Int. J. Remote Sens. 27 1691–1706.

    Article  Google Scholar 

  • Satheesh S K, Dutt C B S, Srinivasan J and Rao U R 2007 Atmospheric warming due to dust absorption over Afro-Asian regions; Geophys. Res. Lett. 34 (4) L04805. doi: 10.1029/2006GL02862.

    Article  Google Scholar 

  • Schuster G L, Dubovik O and Holben B N 2006 Angstrom exponent and bimodal aerosol size distributions; J. Geophys. Res. 111 D07207. doi: 10.1029/2005JD006328.

    Article  Google Scholar 

  • Shettle E P, Kneizys F X and Gallery W O 1980 Suggest modification to the total volume molecular scattering coefficient in LOWTRAN; Appl. Opt. 19 2873–2874.

    Article  Google Scholar 

  • Shao Y 2009 Physics and Modelling of Wind Erosion; Kluwer Academic Publishers, 105p.

  • Shihab M G 2001 Economic development in the UAE; In: United Arab Emirates: A new perspective (eds) Hellyer P and Al Abed I, Trident Press, London.

  • Singh S, Soni K, Bano T, Tanwar R S, Nath S and Arya B C 2010 Clear-sky direct aerosol radiative forcing variations over mega-city Delhi; Ann. Geophys. 28 1157–1166.

    Article  Google Scholar 

  • Smirnov A V, Villevalde Y, O’Neill N T, Royer A and Tarussov A 1995 Aerosol optical depth over the oceans: Analysis in terms of synoptic air mass types; J. Geophys. Res. 100 16,639–16,650.

    Article  Google Scholar 

  • Smirnov A, Holben B N and Eck T F 2000 Cloud-screening and quality control algorithms for the AERONET database; Remote Sens. Environ. 73. doi: 10.1016/S0034-4257(00)00109-7.

  • Sokolik I N and Toon O B 1999 Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths; J. Geophys. Res. 104 9423.

    Article  Google Scholar 

  • Spurr R J D 2004 A new approach to the retrieval of surface properties from earthshine measurements; J. Quant. Spectrosc. Radiat. Transfer 83 (1) 15–46.

    Article  Google Scholar 

  • Spurr R 2006 VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media; J. Quant. Spectrosc. Radiat. Transfer 102 316–342.

    Article  Google Scholar 

  • Spurr R, Wang J, Zeng J and Mishchenko M J 2012 Linearized T-matrix and Mie scattering computations ; J. Quant. Spectrosc. Radiat. Transfer 113 (6) 425– 439.

    Article  Google Scholar 

  • Srivastava A K, Tiwari S, Devara P C S, Bisht D S, Srivastava M K, Tripathi S N and Goloub P 2011 Annales geophysicae pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: Implications to climatic impact; Ann. Geophys. 29 789–804.

    Article  Google Scholar 

  • Stamnes K, Tsay S C, Wiscombe W and Jayaweera K 1988 Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media; Appl. Optics 27 (12) 2502–2509. doi: 10.1364/AO.27.002502.

    Article  Google Scholar 

  • Suarez M J 2005 Technical report series on global modeling and data assimilation; Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system - Version 4, NASA/TM-2005-104606, Washington, DC, Vol. 26, 181 p.

  • Tanre’ D, Remer L A, Kaufman Y J, Mattoo S, Hobbs P V, Livingston J M, Russell P B and Smirnov A 1999 Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS Airborne Simulator during TARFOX; J. Geophys. Res. 104 2261–2278.

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S, Kinne S and Balkanski Y et al. 2006 Analysis and quantification of the diversities of aerosol life cycles within AeroCom; Atmos. Chem. Phys. 6 (7) 1777–1813. doi: 10.5194/acp-6-1777-2006.

    Article  Google Scholar 

  • Thomas G E, Chalmers N, Harris B, Grainger R G and Highwood E J 2013 Regional and monthly and clear-sky aerosol direct radiative effect (and forcing) derived from the Glob AEROSOL-AATSR satellite aerosol product; Atmos. Chem. Phys. 13 393–410. doi: 10.5194/acp-13-393-2013.

    Article  Google Scholar 

  • Toledano C, Cachorro V E, Sorribas M, Berjon A, de la Morena B A, de Frutos A M and Gouloub P 2007 Aerosol optical depth and Angstrom exponent climatology at El Arenosillo AERONET site (Huelva, Spain); Quart. J. Roy. Meteor. Soc. 133. doi: 10.1002/qj.54.

  • Torres O, Bhartia P K, Herman J R, Ahmad Z and Gleason J 1998 Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis; J. Geophys. Res. 103 17,099–17,110.

    Article  Google Scholar 

  • Torres O, Tanskanen A, Veihelmann B, Ahn C, Braak R, Bhartia P K and Levelt P 2007 Aerosols and surface UV products from ozone monitoring instrument observations: an overview; J. Geophys. Res. Atmos. 112 1984–2012.

    Article  Google Scholar 

  • Torres O, Ahn C and Chen Z 2013 Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations; Atmos. Meas. Tech. 6 3257–3270. doi: 10.5194/amt-6-3257-2013.

    Article  Google Scholar 

  • Valenzuela A, Olmo F J, Lyamani H, Antón M, Quirantes A and Alados-Arboledas L 2012 Aerosol radiative forcing during African desert dust events (2005–2010) over Southeastern Spain; Atmos. Chem. Phys. 12 10,331–10,351.

    Article  Google Scholar 

  • Veefkind J P, de Haan J F, Brinksma E J, Kroon M and Levelt P F 2006 Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique; IEEE Trans. Geosci. Remote Sens. 44 (5) 1239–1244. doi: 10.1109/TGRS.2006.871204.

    Article  Google Scholar 

  • Vinoj V, Satheesh S K and Moorthy K K 2010 Optical, radiative, and source characteristics of aerosols at Minicoy, a remote island in the southern Arabian Sea; J. Geophys. Res. 115 D01201. doi: 10.1029/2009JD011810.

    Article  Google Scholar 

  • Wang Y, Xin J, Li Z, Wang S, Wang P, Hao W, Nordgren B L, Chen H, Wang L and Sun Y 2008 Seasonal variations in aerosol optical properties over China; Atmos. Chem. Phys. Discuss. 8 8431–8453.

    Article  Google Scholar 

  • Waquet F, Cairns B, Knobelspiesse K, Chowdhary J, Travis L D, Schmid B and Mishchenko M I 2009 Polarimetric remote sensing of aerosols over land; J. Geophys. Res. 114 D01206. doi: 10.1029/2008JD010619.

    Article  Google Scholar 

  • Wielicki B A, Barkstrom B R, Harrison E F, Lee R B, Smith G L and Cooper J E 1996 Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment; Bull. Am. Meteor. Soc. 77 853– 868.

    Article  Google Scholar 

  • Xu X and Wang J 2015 Retrieval of aerosol microphysical properties from AERONET photo-polarimetric measurements: Information content analysis; J. Geophys. Res. Atmos. 120. doi: 10.1002/2015JD023108.

  • Zhao C, Liu X, Leung L R, Johnson B, McFarlane S A, Gustafson W I J., Fast J D and Easter R 2010 The spatial distribution of mineral dust and its short-wave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments; Atmos. Chem. Phys. 10 8821–8838.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the AERONET team members for data collection and calibration and the website, http://aeronet.gsfc.nasa.gov. We also thank the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.html). UV aerosol absorbing index available at the Goddard Earth Sciences Distributed Active Archive Center (http://disc.sci.gsfc.nasa.gov/data/dataset/OMI/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Naseema Beegum.

Additional information

Corresponding editor: K Krishnamoorthy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beegum, S.N., Romdhane, H.B., Ali, M.T. et al. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates. J Earth Syst Sci 125, 1579–1602 (2016). https://doi.org/10.1007/s12040-016-0759-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-016-0759-x

Keywords

Navigation