Skip to main content
Log in

Laboratory technique for quantitative thermal emissivity measurements of geological samples

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Thermal infrared spectroscopy is a powerful technique for the compositional analysis of geological materials. The spectral feature in the mid-IR region is diagnostic of the mineralogy and spectral signatures of mixtures of minerals that add linearly, and therefore, can be used as an important tool to determine the mineralogy of rocks in the laboratory and remotely for planetary exploration. The greatest challenge in the emission measurement lies in the measurement of the weak thermal photons emitted from geological materials in a laboratory setup, and accurately records the temperature of the rock sample. The present work pertains to the details of a new Thermal Emission Spectrometer (TES) laboratory that has been developed under the ISRO Planetary Science and Exploration (PLANEX) programme, for emission related mineralogical investigations of planetary surfaces. The focus of the paper is on the acquisition and calibration technique for obtaining emissivity, and the deconvolution procedure to obtain the modal abundances of the thermal emission spectra in the range of 6–25 µm using Fourier Transform Infrared (FTIR) spectroscopy. The basic technique is adopted from the work of Ruff et al (1997). This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (<65 µm), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future Indian Moon mission programme (Chandrayan-II) to determine evidences of varied lithologies on the lunar surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams J B, Smith M O and Johnson P E 1986 Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander I site; J. Geophys. Res. 91 8098–8112.

    Article  Google Scholar 

  • Bandfield J L 2006 Extended surface exposures of granitoid compositions in Syrtis Major, Mars; Geophys. Res. Lett. 33 L06203, 1–4.

    Article  Google Scholar 

  • Bandfield J L, Hamilton V E, Christensen P R and McSween Jr H Y 2004 Identification of quartzofeldspathic materials on Mars; J. Geophys. Res. 109 E10009, 1–14.

    Google Scholar 

  • Christensen P R, Kieffer H and Chase S 1985 Determination of Martian surface composition by thermal infrared spectral observations; Lunar. Planet. Sci. XVI 125–126.

    Google Scholar 

  • Christensen P R, Bandfield J L, Hamilton V E, Howard D A, Lane M D, Piatek J L, Ruff S W and Stefanov W L 2000 A thermal emission spectral library of rock-forming minerals; J. Geophys. Res. 105 9735–9739.

    Article  Google Scholar 

  • Christensen P R, Bandfield J L, Hamilton V E, Ruff S W, Kieffer H H, Titus T N, Malin M C, Moris R V, LaneM D, Clark R L, Jakosky B M, Mellon M T, Pearl J C, Conrath B J, Smith M D, Clancy R T, Kuzmin R O, Rousch T, Mehall G L, Gorelick N, Bender K, Murray K, Dason S, Greence E, Silverman S and Greenfield M 2001 Mars global surveyor thermal emission spectrometer experiment: Investigation description and surface science results; J. Geophys. Res. 106(E10) 23,823–23,872.

    Google Scholar 

  • Christensen P R, Bandfield J L, Bell J F, Gorelick N, Hamilton V E, Ivanov V E, Jakosky B M, Kiefer H H, Lane M D, Malin M C, McConnochie T, McEwen H Y, Mehall G L, Moersch J E, Nealson K H, Rice J W, Richardson M I, Ruff S, Smith M D, Titus T N and Wyatt M B 2003 Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results; Science 300 2056–2061.

    Article  Google Scholar 

  • Christensen P R and Harrison T S 1993 Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks; J. Geophys. Res. 98 19,819–19,834.

    Article  Google Scholar 

  • Clark R N 1983 Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water; J. Geopys. Res. 88 10,635–10,644.

    Google Scholar 

  • Clark R N 2004 Spectroscopy of rocks and minerals, and principles of spectroscopy; In: Molecules to Planets: Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing (eds) King P L, Ramsey M S and Swayze G, Mineral. Assoc. Canada, Short Course 33 17–50.

  • Farmer V C 1974 The infra-red spectra of minerals; Mineral. Soc. London, 539 p.

  • Feely K C and Christensen P R 1999 Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks; J. Geophys. Res. 104 24,195–24,210.

    Article  Google Scholar 

  • Formisano V, Angrilli F, Arnold G, Atreya S, Bianchini G, Biondi D, Blanco A, Blecka M I, Coradini A, Colangeli L, Ekonomov A, Esposito F, Fonti S, Giuranna M, Grassi D, Gnedykh V, Grigoriev A, Hansen G, Hirsh H, Khatuntsev I, Kiselev A, Ignatiev N, Jurewicz A, Lellouch E, Lopez Moreno J, Marten A, Mattana A, Maturilli A, Mencarelli E, Michalska M, Moroz V, Moshkin B, Nespoli F, Nikolsky Y, Orfei R, Orleanski P, Orofino V, Palomba E, Patsaev D, Piccioni G, Rataj M, Rodrigo R, Rodriguez J, Rossi M, Saggin B, Titov D and Zasova L 2005 The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission; Planet. Space Sci. 53(10) 963–974.

    Article  Google Scholar 

  • Gillespie A R, Matsunaga T, Rokugawa S and Hook S J 1998 Temperature and emissivity from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images; IEEE Tran. Geosci. Remote Sen. 36 1113–1126.

    Article  Google Scholar 

  • Goetz A F H 1968 Differential infrared lunar emission spectroscopy; J. Geophys. Res. 73 1455–1466.

    Article  Google Scholar 

  • Hamilton V E and Christensen P R 2000 Determining the modal mineralogy of mafic and ultramafic rocks using thermal emission spectroscopy; J. Geophys. Res. 105 9717–9733.

    Article  Google Scholar 

  • Hamilton V E, Christensen P R and McSween H Y 1997 Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy; J. Geophys. Res. 102 25,593–25,603.

    Google Scholar 

  • Hamilton V E, Wyatt M B, McSween H Y and Christensen P R 2001 Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application of Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer; J. Geophys. Res. 106 14,733–14,746.

    Article  Google Scholar 

  • Hawthorne F C 1988 Spectroscopic methods in Mineralogy and Geology; Rev. Mineral. 18. Min. Soc. America.

  • Helbert J, Jessberger E, Benkhoff J, Arnold G, Banaszkiewicz M, Bischoff A, Blecka M, Calcutt S, Colangeli L, Coradini A, Erard S, Fonti S, Killen R, Knollenberg J, Kührt E, Mann I, Mall U, Moroz L, Peter G, Rataj M, Robinson M S, Spohn T, Sprague A, Stöffler D, Taylor F and Warrell J 2005 MERTIS — A thermal infrared imaging spectrometer for the Bepi-Colombo Mission; In: 36th Ann. Lun. Planet. Sci. Conf. 1753.

  • Henry R L 1948 The transmission of powder films in the infrared; J. Opt. Soc. Am. 38 775–789.

    Article  Google Scholar 

  • Jollif B L 1990 Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles; Lunar Planet. Sci. XXI 571–572.

    Google Scholar 

  • Johnson P M, Smith M O and Adams J B 1992 Simple Algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra; J. Geophys. Res. 97 2649–2657.

    Article  Google Scholar 

  • King P L, Ramsey M S, McMillan P F and Swayze G 2004 Laboratory fourier transform infrared spectroscopy methods for geologic samples: Infrared Spectroscopy in Geochemistry, Exploration, and Remote Sensing (eds) King P, Ramsey M and Swayze G, Mineral. Assoc. of Canada, London 33 57–91.

  • Logan L M, Hunt G, Salisbury J and Balsamo 1973 Compositional implications of Christensen frequency maximums for remote sensing applications; J. Geophys. Res. 78 4983–5003.

    Article  Google Scholar 

  • Lucey P G 1991 Comparison of thermal emission spectroscopic measurements of the lunar surface: 1968–1990; Proc. Lunar. Planet. Sci. Conf. 21 417–423.

    Google Scholar 

  • Lucey P B, Hawke B R and Bruno B 1989 Thermal infrared spectroscopy of the Moon; Bull. Am. Astron. Soc. 21 970.

    Google Scholar 

  • Lyon R J P 1965 Analysis of rocks by spectral infrared emission; Econ. Geology 60 715–736.

    Article  Google Scholar 

  • Marvin V B, Holmberg B and Lindstrom 1990 New pieces of the lunar granite-quartz monzodiorite puzzle; Lunar. Planet. Sci. XXI 738–739.

    Google Scholar 

  • Mason B and Melson W G 1970 The Lunar Rocks; Wiley Interscience 179.

  • Maturilli A, Helbert J and Moroz L 2008 The Berlin emissivity database (BED); Planet. Space. Sci. 26 420–425.

    Article  Google Scholar 

  • Moersch J E and Christensen P R 1995 Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra; J. Geophys. Res. 100 7465–7477.

    Article  Google Scholar 

  • Murcray F H D 1970 Infrared emissivity of lunar surface features, 1, balloone-borne observations; J. Geophys. Res. 75 2662–2669.

    Article  Google Scholar 

  • Nash D B, Salisbury J W, Connel J E, Lucey P G and Christensen P R 1993 Evaluation of infrared emission spectroscopy for mapping the Moon’s surface composition from lunar orbit; J. Geophys. Res. 98 23,535–23,552.

    Article  Google Scholar 

  • Nicodemus F E 1965 Directional reflectance and emissivity of an opaque surface; Appl. Opt. 4 767–773.

    Article  Google Scholar 

  • Potter A E and Morgan T H 1981 Observations of silicate reststrahlen bands in lunar infrared spectra; Proc. Lunar. Planet. Sci. Conf. 12B 703–713.

    Google Scholar 

  • Ramsey M S and Christensen P R 1998 Mineral abundance determination: Quantitative deconvolution of thermal emission spectra; J. Geophys. Res. 103 577–596.

    Article  Google Scholar 

  • Ramsey M S 2004 Quantitative geological surface processes extracted from infrared spectroscopy and remote sensing; In: Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing (eds) King P L, Ramsey M S and Swayze G, Mineral. Assoc. Canada 33 197–224.

  • Ruff S W, Christensen P R, Barbara PW and Anderson D L 1997 Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration; J. Geophys. Res. 102 14,899–14,913.

    Article  Google Scholar 

  • Salisbury J W and Wald A 1992 The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals; Icarus 96 121–128.

    Article  Google Scholar 

  • Salisbury J W, Wald A and D’Aria D M 1994 Thermal infrared remote and Kirchoff’s law, 1. Laboratory measurements; J. Geophys. Res. 99 11,897–11,911.

    Google Scholar 

  • Salisbury J W 1993 Mid-infrared spectroscopy: Laboratory data; In: Remote Geochemical Analysis: Elemental and Mineralogical Composition (eds) Pieters C M and Englert P A J (Cambridge: Cambridge University Press) 79–98.

    Google Scholar 

  • Salisbury J W, Walter L S, Vergo Norma and Dana M D’Aria 1993 Infrared spectra of minerals; John Hopkins University Press, 280.

  • Sprague A L, Witteborn F, Kozloski R, Cruikshank D, Bartholomev M and Graps A 1992 The Moon: Midinfrared (7.5–11.4 µm) spectroscopy of selected regions; Icarus 100 73–84.

    Article  Google Scholar 

  • Squyres S W, Arvidson R E, Ruff S, Geller R, Morris R V, Ming D W, Crumpler L, Farmer J D, Des Marais D J, Yen A, McLennan S, McCalvin M, Calvin W, Bell J F, Clark B C, Wang A, McCoy T J, Schmidt M E and De Souza P A 2008 Detection of silica rich deposits in Mars; Science 320 1063–1067.

    Article  Google Scholar 

  • Sunshine J M, Pieters C M and Pratt S R 1990 Deconvolution of mineral absorption bands: An improved approach; J. Geophys. Res. 95 6955–6966.

    Article  Google Scholar 

  • Thomson J L and Salisbury J W 1993 The mid-infrared reflectance of mineral mixtures (7–14 µm); Rem. Sen. Environ. 45 1–13.

    Article  Google Scholar 

  • Tyler A L, Kozlowski W and Lebosfsky L 1988 Determination of rock type of Mercury and Moon through remote sensing in the thermal infrared; Geophys. Res. Lett. 15 808–811.

    Article  Google Scholar 

  • Walter L S and Salisbury J W 1989 Spectral chracterisation of igneous rocks in the 8 to 12 micrometer region; J. Geophys. Res. 94(B7) 9203–9213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mathew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, G., Nair, A., Gundu Rao, T.K. et al. Laboratory technique for quantitative thermal emissivity measurements of geological samples. J Earth Syst Sci 118, 391–404 (2009). https://doi.org/10.1007/s12040-009-0035-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-009-0035-4

Keywords

Navigation