Skip to main content
Log in

Quantitative investigation of intermolecular interactions in dimorphs of 3-Chloro-N-(2-fluorophenyl)benzamide and 2-Iodo-N-(4- bromophenyl)benzamide

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this study, we have analyzed the role of different intermolecular interactions in the polymorphic modifications of 3-chloro-N-(2-fluorophenyl)benzamide (I) and 2-iodo-N-(4- bromophenyl)benzamide (II). The crystals were obtained via slow evaporation method with the alteration of solvents for crystallization. The already reported form [Cryst. Growth Des. (2011) 11:1578] crystallizes in P2\(_{1}\)/c with Z\(^\prime \)=2 [Form IA], while the new form crystallizes in Pna2\(_{1}\) with Z\(^\prime \)=1 [Form IB]. The latter compound crystallizes in P2\(_{1}\)/n with Z\(^\prime \)=1 [Form IIA] and in Pbca with Z\(^\prime \)=1 [Form IIB]. Weak Cl\(\cdot \cdot \cdot \)Cl and C-H\(\cdot \cdot \cdot \)F interactions in the former (IA, IB) and weak I\(\cdot \cdot \cdot \)I and C-H\(\cdot \cdot \cdot \uppi \) interactions in the latter (IIA, IIB) play a vital role in the formation of different polymorphic modifications leading to the observation of conformational and packing polymorphs, respectively. PIXEL calculations show that most of the interactions present in the crystal structures are dispersive in nature. 2D Fingerprint plots revealed that the relative contribution of different intermolecular interactions in different polymorphic forms was different.

Graphical abstract

SYNOPSIS We have analyzed the role of different intermolecular interactions and evaluated their contributions in the polymorphic modifications of 3-chloro-N-(2-fluorophenyl)benzamide (I) and 2-iodo-N-(4- bromophenyl)benzamide (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bernstein J 2002 Polymorphism in Molecular Crystals (Oxford: Oxford University Press)

    Google Scholar 

  2. Lee A Y, Erdemir E and Myerson A S 2011 Crystal polymorphism in chemical process development Annu. Rev. Chem. Biomol. Eng. 2 259

    Article  CAS  Google Scholar 

  3. Bernstein J 2011 Polymorphism - A Perspective Cryst. Growth Des. 11 632

    Article  CAS  Google Scholar 

  4. Cruz-Cabeza A J and Bernstein J 2014 Conformational Polymorphism J. Chem. Rev. 114 2170

    Article  CAS  Google Scholar 

  5. Bernstein J 1987 In Conformational Polymorphism In Organic Solid State Chemistry: Studies in Organic Chemistry Vol. 32 G R Desiraju (Ed.) (Elsevier: Amsterdam)

  6. Nangia A 2008 Conformational Polymorphism in Organic Crystals Acc. Chem. Res. 41 595

    Article  CAS  Google Scholar 

  7. Braun D E, Gelbrich T, Kahlenberg V, Gerhard L, Wieser J and Griesser U J 2008 Packing polymorphism of a conformationally flexible molecule (aprepitant) New J. Chem. 32 1677

    CAS  Google Scholar 

  8. Phukan N and Baruah J B 2015 Polymorphs of Thiazole-Derived Imines Connected to Hydroxyaromatics Cryst. Growth Des. 15 1843

    Article  CAS  Google Scholar 

  9. Krishnan B P, Rai R, Asokan A and Sureshan K M 2016 Crystal-to-Crystal Synthesis of Triazole-Linked Pseudo-proteins via Topochemical Azide–Alkyne Cycloaddition Reaction J. Am. Chem. Soc. 138 14824

    Article  CAS  Google Scholar 

  10. Rajbongshi B K, Nair N N, Nethaji M and Ramanathan G 2012 Segregation into Chiral Enantiomeric Conformations of an Achiral Molecule by Concomitant Polymorphism Cryst. Growth Des. 12 1823

    Article  CAS  Google Scholar 

  11. Braun D E, Gelbrich T, Wurst K and Griesser U J 2016 Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder, and Stoichiometric 0.8-Hydrate Cryst. Growth Des. 16 3480

    Article  CAS  Google Scholar 

  12. Cruz-Cabeza A J, Reutzel-Edens S M and Bernstein J 2015 Facts and fictions about polymorphism Chem. Soc. Rev. 44 8619

    Article  CAS  Google Scholar 

  13. Desiraju G R 2008 Polymorphism: The Same and Not Quite the Same Cryst. Growth Des. 8 3

    Article  CAS  Google Scholar 

  14. Kulkarni S A, Meekes H and Horst J H T 2014 Polymorphism Control through a Single Nucleation Event Cryst. Growth Des. 14 1493

    Article  CAS  Google Scholar 

  15. Desiraju G R 2013 Crystal Engineering: From Molecule to Crystal J. Am. Chem. Soc. 135 9952

    Article  Google Scholar 

  16. Chung H and Diao Y J 2016 Polymorphism as an emerging design strategy for high performance organic electronics Mater. Chem. C 4 3915

    CAS  Google Scholar 

  17. Senju T, Nishimura N and Mizuguchi J 2007 Polymorph of 2,9-Dichloroquinacridone and Its Electronic Properties J. Phys. Chem. A 111 2966

    Article  CAS  Google Scholar 

  18. Erdemir D, Lee A Y and Myerson A S 2007 Polymorph selection: the role of nucleation, crystal growth and molecular modelling Curr. Opin. Drug Disc. 10 746

    CAS  Google Scholar 

  19. Kazmierczak M and Katrusiak A 2015 Quantitative estimate of cohesion forces CrystEngComm 17 9423

    Article  CAS  Google Scholar 

  20. Rajewski K W, Andrzejewski M and Katrusiak A 2016 Competition between Halogen and Hydrogen Bonds in Triiodoimidazole Polymorphs Cryst. Growth Des. 16 3869

    Article  CAS  Google Scholar 

  21. Makino S, Nakanishi E and Tsuji T 2003 Efficient Solid-phase Synthesis of 2,1,3-Benzothiadiazin-4-one 2-Oxides with SynPhase\(^{\rm TM}\) Lanterns Bull. Korean Chem. Soc. 24 389

  22. Zhichkin P, Kesicki E, Treiberg J, Bourdon L, Ronsheim M, Ooi H C, White S, Judkins A and Fairfax D 2007 A Novel Highly Stereoselective Synthesis of 2,3-Disubstituted 3H-Quinazoline-4-one Derivatives Org. Lett. 9 1415

    Article  CAS  Google Scholar 

  23. Jackson S, Degrado W, Dwivedi A, Parthasarathy A, Higley A, Krywko J, Rockwell A, Markwalder J, Wells G, Wexler R, Mousa S and Harlow R J 1994 Template-Constrained Cyclic Peptides: Design of High-Affinity Ligands for GPIIb/IIIa J. Am. Chem. Soc. 116 3220

    Article  CAS  Google Scholar 

  24. Capdeville R, Buchdunger E, Zimmermann J and Matter A 2002 Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug Nat. Rev. Drug Discov. 1 493

    Article  CAS  Google Scholar 

  25. Wada K, Murata T, Shibuya K and Shimojo E 2011 Benzanilides with insecticidal activity US Patent, 20100062937A1

  26. Burgi H B and Dunitz J D 1970 Crystal and Molecular Structures of Benzylideneaniline, Benzylideneaniline-p-carboxylic acid and p-Methylbenzylidene-p-nitriloaniline Helv. Chim. Acta 52 1747

    Article  Google Scholar 

  27. Burgi H B and Dunitz J D 1971 Multiple Solutions of Crystal Structures by Direct Methods Acta Crystallogr. A27 117

    Google Scholar 

  28. Chopra D and Guru Row T N 2005 Dimorphic Forms in a Non-Centrosymmetric Environment from a Prochiral Molecule:? Cooperative Interplay of Strong Hydrogen Bonds and Weak Intermolecular Interactions Cryst. Growth Des. 5 1679

    Article  CAS  Google Scholar 

  29. Chopra D and Guru Row T N 2008 Disorder Induced Concomitant Polymorphism in 3-Fluoro-N-(3-fluorophenyl)benzamide Cryst. Growth Des. 8 848

    Article  CAS  Google Scholar 

  30. Nayak S K, Reddy M K and Guru Row T N 2009 4-Chloro-N-(3-chlorophenyl) benzamide Acta Cryst. E65 o2434

  31. Nayak S K, Reddy M K, Guru Row T N and Chopra D 2011 Role of Hetero-Halogen (F\(\cdot \cdot \cdot \)X, X = Cl, Br, and I) or Homo-Halogen (X\(\cdot \cdot \cdot \)X, X = F, Cl, Br, and I) Interactions in Substituted Benzanilides Cryst. Growth Des. 11 1578

    Article  CAS  Google Scholar 

  32. Nayak S K, Reddy M K, Chopra D and Guru Row T N 2012 Evaluation of the role of disordered organic fluorine in crystal packing: insights from halogen substituted benzanilides CrystEngComm 14 200

    Article  CAS  Google Scholar 

  33. Panini P and Chopra D 2012 Role of intermolecular interactions involving organic fluorine in trifluoromethylated benzanilides CrystEngComm 14 1972

    Article  CAS  Google Scholar 

  34. Panini P and Chopra D 2014 Experimental and Theoretical Characterization of Short H-Bonds with Organic Fluorine in Molecular Crystals Cryst. Growth Des. 14 3155

    Article  CAS  Google Scholar 

  35. Panini P, Bhandary S and Chopra D 2016 Exploiting the Role of Molecular Electrostatic Potential, Deformation Density, Topology, and Energetics in the Characterization of S\(\cdot \cdot \cdot \)N and Cl\(\cdot \cdot \cdot \)N Supramolecular Motifs in Crystalline Triazolothiadiazoles Cryst. Growth Des. 16 2561

    Article  CAS  Google Scholar 

  36. SMART (V 5.628), SAINT (V 6.45a), SADBS, XPREP, SHELXTL; Bruker AXS Inc.; Madison, WI, 2004

  37. Oxford Diffraction 2009 CrystAlis CCD and CrystAlis RED, Version 1.171.33.31. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.

  38. Sheldrick G M 2008 A Short History of SHELX . Acta Crystallographica. Acta Crystallographica Acta Cryst. A64 112

    Article  Google Scholar 

  39. Farrugia L J 1999 WinGX suite for small-molecule single-crystal crystallography WinGX (V 1.70.01) J. Appl. Crystallogr. 32 837

    Article  CAS  Google Scholar 

  40. Macrae C F, Bruno I J, Chisholm J A, Edgington P R, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Streek J and Wood P A 2008 Mercury CSD 2.0 –new features for the visualization and investigation of crystal structures J. Appl. Crystallogr. 41 466 [http://www.ccdc.cam.ac.uk/mercury]

  41. Nardelli M J 1995 PARST95 - an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses Appl. Crystallogr. 28 659

    Article  CAS  Google Scholar 

  42. Spek A L 2009 Structure validation in chemical crystallography Acta Crystallogr. D65 148

    Google Scholar 

  43. Gavezzotti A 2011 Efficient computer modelling of organic materials. The atom–atom, Coulomb–London–Pauli (AA-CLP) model for intermolecular electrostatic-polarization, dispersion and repulsion energies New J. Chem. 35 1360

    Article  CAS  Google Scholar 

  44. Gavezzotti A 2008 Non-conventional bonding between organic molecules. The ‘halogen bond’ in crystalline systems Mol. Phys. 106 1473

    Article  CAS  Google Scholar 

  45. Maschio L, Civalleri B, Ugliengo P and Gavezzotti A 2011 Intermolecular Interaction Energies in Molecular Crystals: Comparison and Agreement of Localized Møller–Plesset 2, Dispersion-Corrected Density Functional, and Classical Empirical Two-Body Calculations J. Phys. Chem. A 115 11179

    Article  CAS  Google Scholar 

  46. Panini P, Gonnade R G and Chopra D 2016 Experimental and computational analysis of supramolecular motifs involving Csp\(^{2}\)(aromatic)–F and CF\(_{3}\) groups in organic solids New J. Chem. 40 4981

    Article  CAS  Google Scholar 

  47. Shukla R, Mohan T P, Vishalakshi B and Chopra D 2014 Experimental and theoretical analysis of lp\(\cdots \pi \) intermolecular interactions in derivatives of 1,2,4-triazoles CrystEngComm 16 1702

    Article  CAS  Google Scholar 

  48. Shukla R, Mohan T P, Vishalakshi B and Chopra D 2017 Synthesis, crystal structure and theoretical analysis of intermolecular interactions in two biologically active derivatives of 1,2,4-triazoles J. Mol. Struct. 1134 426

    Article  CAS  Google Scholar 

  49. Feller D 1996 The role of databases in support of computational chemistry calculations J. Comput. Chem. 17 1571

    Article  CAS  Google Scholar 

  50. Schuchardt K L, Didier B T, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J and Windus T L 2007 Basis set exchange: a community database for computational sciences J. Chem. Inf. Model 47 1045

    Article  CAS  Google Scholar 

  51. Spackman M A and McKinnon J J 2002 Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 4 378

    Article  CAS  Google Scholar 

  52. McKinnon J J, Jayatilaka D and Spackman M A 2007 Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem. Commun. 37 3814

  53. Wolff S K, Grimwood D J, McKinnon J J, Turner M J, Jayatilaka D and Spackman M A 2012 CrystalExplorer Version 3.1 University of Western Australia, Crawley Australia

  54. McKinnon J J, Fabbiani F P A and Spackman M A 2007 Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis Cryst. Growth Des. 7 755

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank DST, India for the XRD facility at IISc, Bangalore. RS thanks DST-INSPIRE for the PhD Fellowship. SKN thanks CSIR & DST for financial assistance. DC thanks IISER Bhopal for research facilities and infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susanta K Nayak or Deepak Chopra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R., Nayak, S.K., Chopra, D. et al. Quantitative investigation of intermolecular interactions in dimorphs of 3-Chloro-N-(2-fluorophenyl)benzamide and 2-Iodo-N-(4- bromophenyl)benzamide. J Chem Sci 130, 38 (2018). https://doi.org/10.1007/s12039-018-1444-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1444-1

Keywords

Navigation