Skip to main content
Log in

Synthesis, crystallographic characterization, DFT and TD-DFT studies of Oxyma-sulfonate esters

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Three oxyma sulfonate esters were prepared using dichloromethane-water (two-phase method) in the presence of sodium carbonate for scavenging HCl. The products were characterized by FT-IR, NMR (\(^{1}\hbox {H}\) and \(^{13}\hbox {C}\)), UV-Vis spectra and elemental analysis. X-ray single crystal diffraction experiments proved the molecular structures of three esters. Their molecular structures were also calculated using DFT/B3LYP method. The optimized structures agreed well with the X-ray structures. Time-dependent density functional theory (TD-DFT) was used to assign the electronic absorption bands observed experimentally. Pyridine derivative showed two bands at shorter \({\uplambda }_{\mathrm{max}}\) compared to the others, both experimentally and theoretically. The NMR chemical shifts were computed for protons and carbons using GIAO method, which correlated well with the experimental data. Natural charges, dipole moments and chemical reactivity of these molecules, as well as their non-linear optical activity, were computed and compared.

Graphical Abstract:

SYNOPSIS An eco-friendly method was used to synthesise three oxyma-sulfonate esters using two-phase (dichloromethane-water) method in presence of sodium carbonate for scavenging HCl. The oxyma sulfonate esters were characterized using different spectroscopic techniques (FT-IR, NMR, UV-Vis) as well as X-ray single crystal diffraction analysis. The electronic and spectroscopic properties of these esters were computed using DFT/B3LYP method

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hangan A C, Turza A, Lianastan R, Sevastre B, Pàll E, Cetean S and Oprean L T S 2016 Synthesis, crystal structure and characterization of new biologically active Cu(II) complexes with ligand derived from \(N\)-substituted sulfonamide J. Chem. Sci. 128 815

    Article  CAS  Google Scholar 

  2. Tan C, de Noronha R G, Devi N S, Jabbar A A, Kaluz S, Liu Y, Mooring S R, Nicolaou K C, Wang B and Van Meir E G 2011 Sulfonamides as a New Scaffold for Hypoxia Inducible Factor Pathway Inhibitors Bioorg. Med. Chem. Lett. 21 5528

    Article  CAS  Google Scholar 

  3. Wilden J D, Geldeard L, Lee C C, Judd D B and Caddick S 2007 Trichlorophenol (TCP) sulfonate esters: A selective alternative to pentafluorophenol (PFP) esters and sulfonyl chlorides for the preparation of sulfonamides Chem. Commun. 1074

  4. O’Connell J F and Rapoport H 19921-Benzenesulfonyl- and 1-p-toluenesulfonyl-3-methylimidazolium triflates: Efficient reagents for the preparation of arylsulfonamides and arylsulfonates J. Org. Chem. 5 7477

  5. Caddick S, Wilden J D and Judd D B 2004 Direct Synthesis of Sulfonamides and Activated Sulfonate Esters from Sulfonic Acids J. Am. Chem. Soc. 126 1024

    Article  CAS  Google Scholar 

  6. Katritzky A R, Rodriguez-Garcia V and Nair S K 2004 A General and Efficient Synthesis of Sulfonylbenzotriazoles from \(N\)-Chlorobenzotriazole and Sulfinic Acid Salts J. Org. Chem. 69 1849

    Article  CAS  Google Scholar 

  7. Yan L, Bertarelli D C G, Hayallah A M, Meyer H, Klotz K N and Muller C E 2006 A New Synthesis of Sulfonamides by Aminolysis of \(p\) Receptor Antagonists J. Med. Chem. 49 4384

    Article  CAS  Google Scholar 

  8. Palakurthy N B, Nadimpally K C, Dev D, Rana S and Mandal B 2013 Sulfonamide Synthesis via Oxyma-\(O\)-sulfonates – Compatibility to Acid Sensitive Groups and Solid-Phase Peptide Synthesis Eur. J. Org. Chem. 2627

  9. Kundu B, Shukla S and Shukla M 1994 Use of \(1-\upbeta \) naphthalenesulfonyloxy benzotriazole as coupling reagent in solid phase peptide synthesis Tetrahedron Lett35 9613

    Article  CAS  Google Scholar 

  10. Khare S K, Singh G, Agarwal K C and Kundu B 1998 Use of \(1-\upbeta \)-Naphthalene sulfonyloxybenzotriazole as Coupling Reagent for Peptide Synthesis in the Presence of Fluorinated Alcohols as Cosolvent Protein Pept. Lett5 171

    CAS  Google Scholar 

  11. Devedas B, Kundu B, Srivastava A and Mathur K B 1993 \(6\text{- }\text{ Nitro }\text{-l- }\upbeta \)-Naphthalenesulfonyloxybenzotriazole: A Novel Coupling Reagent For Peptide Synthesis Tetrahedron Lett34 6455

    Article  Google Scholar 

  12. Carpino L A, El-Faham A and Albericio F 1994 Use of Onium Salt-Based Coupling Reagents in Peptide Synthesis Tetrahedron Lett35 2279

    Article  CAS  Google Scholar 

  13. Han Y, Albericio F and Barany G 1997 Occurrence and Minimization of Cysteine Racemization during Stepwise Solid-Phase Peptide Synthesis J. Org. Chem. 62 4307

    Article  CAS  Google Scholar 

  14. Carpino L A, Xia J, Zhang C and El-Faham A 2004 Organophosphorus and nitro-substituted sulfonate esters of 1-hydroxy-7-azabenzotriazole as highly efficient fast-acting peptide coupling reagents J. Org. Chem. 6 962

    Google Scholar 

  15. Carpino L A 19931-Hydroxy-7-azabenzotriazole: An efficient peptide coupling additive J. Am. Chem. Soc115 4397

    Article  CAS  Google Scholar 

  16. Carpino L A, El-Faham A and Albericio F 1995 Efficiency in Peptide Coupling: 1-Hydroxy-7-azabenzotriazole vs 3,4-Dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine J. Org. Chem60 3561

    Article  CAS  Google Scholar 

  17. Wehrstedt K D, Wandrey P A and Heitkamp D 2005 Explosive properties of 1-hydroxybenzotriazole J. Hazard. Mater126 1

    Article  CAS  Google Scholar 

  18. Subirós-Funosas R, Prohens R, Barbas R, El-Faham A and Albericio F 2009 Oxyma: An efficient additive for peptide synthesis to replace benzotriazole-based HOBt and HOAt with a lower risk of explosion Chem. Eur. J. 15 9394

    Article  Google Scholar 

  19. Khattab Sh N 2010 Sulfonate Esters of 1-Hydroxypyridin-2(1H)-one and Ethyl 2-Cyano-2- (hydroxyimino)acetate (Oxyma) as Effective Peptide Coupling Reagents to Replace 1-Hydroxybenzotriazole and 1-Hydroxy-7-azabenzotriazole Chem. Pharm. Bull58 501

    Article  CAS  Google Scholar 

  20. El-Faham A, Elnakdy Y A, El Gazzar M S A, Abd El-Rahman M M and Khattab Sh N 2014 Synthesis, characterization and anti-proliferation activities of novel oximinosulfonate esters Chem. Pharm. Bull. 62 373

    Article  CAS  Google Scholar 

  21. Khattab Sh N, Subirós-Funosas R, El-Faham A and Albericio F 2012 Cyanoacetamide-based oxime carbonates: an efficient, simple alternative for the introduction of Fmoc with minimal dipeptide formation Tetrahedron 68 3056

    Article  CAS  Google Scholar 

  22. Khattab Sh N, Subirós-Funosas R, El-Faham A and Albericio F 2012 Screening of \(N\)Hydroxysuccinimide Chemistry Open 1 147

  23. Sheldrick G M Crystal structure refinement with SHELXL 2015 Acta Crystallogr. C 71 3

  24. Sheldrick G M, SHELXTL-PC (Version 5.1) 1997 Siemens Analytical Instruments, Inc., Madison, WI

  25. (a) Frisch M J and et al.,2004 Gaussian–03, Revision C.01, Gaussian, Inc., Wallingford, CT; (b) GaussView, 2007 Version 4.1, Dennington R II, T Keith, J Millam, Semichem Inc., Shawnee Mission, KS

  26. Ditchfield R 1972 Molecular orbital theory of magnetic shielding and magnetic susceptibility J. Chem. Phys56 5688

    Article  CAS  Google Scholar 

  27. Wolinski K, Hinton J F and Pulay P 1990 Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations J. Am. Chem. Soc112 8251

    Article  CAS  Google Scholar 

  28. Petersilka M, Gossmann U J and Gross E K U 1996 Excitation Energies from Time-Dependent Density-Functional Theory Phys. Rev. Lett. 76 1212

    Article  CAS  Google Scholar 

  29. Bauernschmitt R and Ahlrichs R 1996 Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory Chem. Phys. Lett. 256 454

    Article  CAS  Google Scholar 

  30. Jamorski C, Casida M E and Salahub D R 1996 Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: \(\text{ N }_{2}\) as a case study J. Chem. Phys104 5134

    Article  CAS  Google Scholar 

  31. O’Boyle N M, Tenderholt A L and Langner K M 2008 cclib: A library for package-independent computational chemistry algorithms J. Comput. Chem29 839

    Article  Google Scholar 

  32. Kisel V M, Kostyrko E O and Kovtunenko V A 2002 Synthesis and Biological Properties of Isoquinolines Spirofused with Carbocycles and Heterocycles at Position 4 Chem. Heterocycl. Compd38 1295

    Article  CAS  Google Scholar 

  33. Jarrahpour A, Ebtahimi E, De Clercq E, Sinou V, Latour C D, Bouktab L and Brunel J M 2011 Regio- and sterochemistry of the [2+2]-cycloaddition reaction between enones and alkenes. A DFT study Tetrahedron 67 8699

    Article  CAS  Google Scholar 

  34. Allen F H, Kennard O, Watson D G, Brammer L, Orpen A G and Taylor R 1987 Tables of bond lengths determined by \(X\)-ray and neutron diffraction. Part 1. Bond lengths in organic compounds Part. J. Chem. Soc. Perkins Trans. II 1

  35. Zhurko G A and Zhurko D A 2005 Chemcraft: Lite Version Build 08 (Freeware, Available online: http://www.chemcraftprog.com)

  36. Sun Y X, Hao Q L, Wei W X, Yu Z X, Lu L D, Wang X and Wang Y S 2009 Experimental and density functional studies on 4-(3,4-dihydroxy benzylideneamino)antipyrine, and 4-(2,3,4-trihydroxybenzylideneamino)antipyrine J. Mol. Str. Theochem904 74

    Article  CAS  Google Scholar 

  37. Andraud C, Brotin T, Garcia C, Pelle F, Goldner P, Bigot B and Collet A 1994 Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives J. Am. Chem. Soc. 116 2094

    Article  CAS  Google Scholar 

  38. Geskin V M, Lambert C and Bredas J L 2003 Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/BoratoDiphenylpolyene Zwitterions: the Remarkable Role of Polarized Aromatic Groups J. Am. Chem. Soc125 15651

    Article  CAS  Google Scholar 

  39. Nakano M, Fujita H, Takahata M and Yamaguchi K 2002 Theoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Toward an Understanding of Structure-Property Relation in NLO Responses of Fractal Antenna Dendrimers J. Am. Chem. Soc. 124 9648

    Article  CAS  Google Scholar 

  40. Sajan D, Joe H, Jayakumar V S and Zaleski J 2006 Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate J. Mol. Str. 785 43

    Article  CAS  Google Scholar 

  41. Mahanalingam K, Nethaji M and Das P K 1996 Second harmonic generation in push-pull ethylenes: Influence of chirality and hydrogen bonding J. Mol. Str. 378 177

    Google Scholar 

  42. Foresman J B, Frisch A E 1996 Exploring Chemistry with Electronic Structure Methods, second ed., Gaussian, Pittsburgh, PA.

    Google Scholar 

  43. Chang R 2001 Chemistry \(7^{{\rm th}}\) edn. (New York: McGraw-Hill)

    Google Scholar 

  44. Kosar B and Albayrak C 2011 Spectroscopic investigations and quantum chemical computational study of \((E)\)-4-methoxy-2-[(p-tolylimino)methyl]phenol Spectrochim. Acta 78 160

    Article  Google Scholar 

  45. Koopmans T A 1993 Über die Zuordnung von Wellenfunktionen und Eigenwertenzu den Einzelnen Elektronen Eines Atoms Physica 104

  46. Parr R G and Yang W 1989 Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press)

    Google Scholar 

  47. Parr R G, Von Szentpàly L and Liu S B 1999 Electrophilicity index J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  48. Singh R N, Kumar A, Tiwari R K, Rawat P and Gupta V P 2013 A combined experimental and quantum chemical (DFT and AIM) study on molecular structure, spectroscopic properties, NBO and multiple interaction analysis in a novel ethyl 4-[2-(carbamoyl)hydrazinylidene]-3,5-dimethyl-\(1H\)-pyrrole-2-carboxylate and its dimer J. Mol. Str1035 427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No. (RGP-234, Saudi Arabia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saied M Soliman or Ayman El-Faham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 934 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, S.M., Ghabbour, H.A., Khattab, S.N. et al. Synthesis, crystallographic characterization, DFT and TD-DFT studies of Oxyma-sulfonate esters. J Chem Sci 129, 1469–1481 (2017). https://doi.org/10.1007/s12039-017-1354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1354-7

Keywords

Navigation