Skip to main content
Log in

Differential scanning calorimetric and powder X-ray diffraction studies on a homologous series of N-acyl-L-alanine esters with matched chains (n = 9-18)

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A homologous series of two chain derivatives of L-alanine, namely N-acyl L-alanine alkyl esters (NAAEs), bearing matched, saturated, acyl and alkyl chains ( n= 9-18) have been synthesized. The thermotropic phase transitions and supramolecular structure of NAAEs were investigated by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Results obtained from DSC studies indicate that the transition temperatures ( T t), enthalpies ( ΔH t) and entropies ( ΔS t) exhibit odd-even alternation with compounds bearing odd acyl and alkyl chains showing higher values of T t, ΔH t and ΔS t as compared to NAAEs with even acyl and alkyl chains. However, the transition enthalpies and entropies of the odd- and even chain length series independently exhibit a linear dependence on the chain length. The d-spacings obtained from PXRD increase linearly with chain length with an increment of 1.76 Å/CH 2, suggesting that NAAEs adopt either a tilted bilayer structure or a bent structure. The present results provide a thermodynamic and structural basis for investigating the interaction of NAAEs with other membrane lipids, which in turn can shed light in understanding how they can enhance the transdermal permeability of stratum corneum.

DSC studies on N-acyl L-alanine alkyl esters (NAAEs) bearing matched, saturated, acyl and alkyl chains (n = 9-18) indicate that the transition temperatures, enthalpies and entropies exhibit odd-even alternation with the odd-chain-length series displaying higher values. PXRD studies suggest that NAAEs adopt a tilted bilayer (or bent) structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bouwstra J A and Honeywell-Nguyen P L 2002 Adv. Drug Deliv. Rev. 54 S1–S41

    Article  Google Scholar 

  2. Lampe M A, Burlingame A L, Whitney J, Williams M L, Brown B E, Roitman E and Elias P M 1983 J. Lipid Res. 24 120

    CAS  Google Scholar 

  3. Elias P M 1983 J. Invest. Dermatol. 80 44

  4. Vavrova K, Hrabalek A, Dolezal P, Holas T and Zbytovska J 2003 Bioorg. Med. Chem. Lett 13 2351

    Article  CAS  Google Scholar 

  5. Minakuchi N, Hoe K, Yamaki D, Ten-no S, Nakashima K, Goto M, Mizuhata M and Maruyama T 2012 Langmuir 28 9259

    Article  CAS  Google Scholar 

  6. Sivaramakrishna D and Swamy M J 2015 (submitted for publication)

  7. Sivaramakrishna D, Reddy S T, Nagaraju T and Swamy M J 2015 Colloids and Surfaces A: Physicochem. Eng. Aspects 471 108

    Article  CAS  Google Scholar 

  8. Akoka S, Tellier C, Le Roux C and Marion D 1988 Chem. Phys. Lipids 46 43

    Article  CAS  Google Scholar 

  9. Marsh D 1990 In Handbook of Lipid Bilayers (Florida: CRC Press) p. 135

  10. Huang S M, Bisogno T, Petros T J, Chang S -Y, Zavitsanos P A, Zipkin R E, Sivakumar R, Coop A, Maeda D Y, De Petrocellis L, Burstein S, Di Marzo V and Walker J M 2001 J. Biol. Chem. 276 42639

    Article  CAS  Google Scholar 

  11. Rimmerman N, Bradshaw H B, Hughes H V, Chen J S -C, Hu S S -J, McHugh D, Vefring E, Jahnsen J A, Thompson E L, Masuda K, Cravatt B F, Burstein S, Vasko M R, Prieto A L, O’Dell D K and Walker J M 2008 Mol. Pharmacol. 74 213

    Article  CAS  Google Scholar 

  12. Smoum R, Bar A, Tan B, Milman G, Attar-Namdar M, Ofek O, Stuart J M, Bajayo A, Tam J, Kram V, O’Dell D, Walker M J, Bradshaw H B, Bab I and Mechoulam R 2010 Proc. Natl. Acad. Sci. U S A 107 17710

    Article  Google Scholar 

  13. Reddy S T, Krovi K P and Swamy M J 2014 Cryst. Growth Des. 14 4944

    Article  CAS  Google Scholar 

  14. Larsson K 1986 In The Lipid Hand-book F D Gunstone, J L Harwood and F B Padley (Eds.) (London: Chapman and Hall) p. 321

  15. Ramakrishnan M, Sheeba V, Komath S S and Swamy M J 1997 Biochim. Biophys. Acta 1329 302

    Article  CAS  Google Scholar 

  16. Kamlekar R K, Tarafdar P K and Swamy M J 2010 J. Lipid Res. 51 42

    Article  CAS  Google Scholar 

  17. Reddy S T, Tarafdar P K, Kamlekar R K and Swamy M J 2013 J. Phys. Chem. B 117 8747

    Article  CAS  Google Scholar 

  18. Reddy S T and Swamy M J 2015 Biochim. Biophys. Acta 1848 95

    Article  CAS  Google Scholar 

  19. Lewis R N A H, Mantsch H H and McElhaney R N 1989 Biophys. J. 56 183

    Article  CAS  Google Scholar 

  20. Lewis R N A H, Sykes B D and McElhaney R N 1987 Biochemistry 26 4036

    Article  CAS  Google Scholar 

  21. Marsh D and Swamy M J 2000 Chem. Phys. Lipids 105 43

    Article  CAS  Google Scholar 

  22. Tarafdar P K, Reddy S T and Swamy M J 2012 Cryst. Growth Des. 12 1132

    Article  CAS  Google Scholar 

  23. Tarafdar P K, Reddy S T and Swamy M J 2013 J. Phys. Chem. B 117 9900

    Article  CAS  Google Scholar 

  24. Larsson K 1996 Acta Crystallogr. 21 267

    Article  Google Scholar 

  25. Larsson K 1966 J. Am. Oil Chem. Soc 43 559

    Article  CAS  Google Scholar 

  26. Marsh D 1982 In Supramolecular Structure and Function G Pifat and J N Herak (Eds.) (Plenum Press: New York) p. 127

  27. Pascher I, Sundell S, Harlos K and Eibl H 1987 Biochim. Biophys. Acta 896 77

    Article  CAS  Google Scholar 

  28. Pascher I and Sundell S 1977 Chem. Phys. Lipids 20 175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Department of Science and Technology (India) to MJS. DS was supported by Senior Research Fellowships from the Council of Scientific and Industrial Research (India). The University Grants Commission (India) is acknowledged for its support through the UPE and CAS programs, to University of Hyderabad and School of Chemistry, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MUSTI J SWAMY.

Additional information

Supplementary Information

Representative FTIR, 1H-NMR, 13C-NMR and HRMS spectra of N-decanoyl-L-alanine decyl ester are given in Figures S14. Corresponding spectral data for all NAAEs ( n= 9-18) are given in tables S1–S4. Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 862 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SIVARAMAKRISHNA, D., SWAMY, M.J. Differential scanning calorimetric and powder X-ray diffraction studies on a homologous series of N-acyl-L-alanine esters with matched chains (n = 9-18). J Chem Sci 127, 1627–1635 (2015). https://doi.org/10.1007/s12039-015-0928-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0928-5

Keywords

Navigation