Skip to main content
Log in

Comparative study of spectroscopic properties of the low-lying electronic states of 2,4-pentadien-1-iminium cation and its N-substituted analogues

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Semiempirical and ab initio-based CI methods have been employed to study the low-lying electronic states of 2,4-pentadien-1-iminium cation and its N-substituted analogues with electron-donating (methyl, isopropyl) and electron-withdrawing (fluoromethyl) groups on nitrogen. Variations of the dihedral angles (Γ3, Γ4) of the ground state have given the global minima and global maxima at (180°, 180°) and (90°, 0°) conformations, respectively, with some exceptions in the case of fluoromethyl compound. Increase in the +I effect on nitrogen shifts the TICT conical intersection point away from the 90° (Γ3 dihedral angle) value, when the Γ4 value is kept fixed at 180°. Transition moment values of the allowed S0(1Ag –like) →S1 (2Bu–like) transitions are expectedly higher than the forbidden S0(1Ag –like) →S2(2Ag –like) transitions by almost 5.6 D. Radiative lifetime values of the first excited states are calculated to be around 215 ps for all the four compounds. At (180°, 180°) conformation the vertical excitation energy (VEE) between the S0 and S1 states of the 2,4-pentadieniminium cation is found to be 3.3 eV, which corresponds to the absorption wavelength value of roughly 375 nm. The VEE value increases with substituents having +I effect on nitrogen, while for the fluoromethyl compound it is calculated to be around 2.85 eV. The energy gap between the first two excited singlet states is found to have the least value in the isopropyl-substituted compound, where the S2 state contains a huge contribution from the HOMO2→LUMO2 configuration.

Substitution of electron-donating groups (methyl, isopropyl) on the nitrogen of 2,4-pentadien-1-iminium cation shifts the TICT conical intersection position (with respect to the Γ3 dihedral angle) away from the 90° value, when Γ4 is kept fixed at 180°. This is due to the stabilization of the covalent-ground state (S0) and destabilization of the first excited singlet state (S1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Figure 2
Fig. 3

Similar content being viewed by others

References

  1. Stoeckenius W and Rowen R 1962 J. Cell Biol. 34 65

    Google Scholar 

  2. Wald G 1968 Science 162 230

    Article  CAS  Google Scholar 

  3. Fodor S P A, Ames J B, Gebhard R, van den Berg E M M, Stoeckenius W, Lugtenburg J and Mathies R A 1988 Biochemistry 27 7097

    Article  CAS  Google Scholar 

  4. Schulten K and Tavan P 1978 Nature 272 85

    Article  CAS  Google Scholar 

  5. Schulten K 1978 Energetics and structure of halophilic microorganism (eds) S R Caplan and M Ginzburg (Amsterdam: Elsevier) pp 331

    Google Scholar 

  6. Gerwert K and Siebert F 1986 J.EMBO 4 805

    Google Scholar 

  7. Sekharan S, Weingart O and Buss V 2006 Biophys. J.: Biophys. Lett. L07

  8. Send R and Sundholm D 2008 J. Mol. Model 14 717

    Article  CAS  Google Scholar 

  9. Gascón J A, Sproviero E M and Batista V S 2005 J. Chem. Theory Comput. 1 674

    Article  Google Scholar 

  10. Gascón J A, Sproviero E M and Batista V S 2006 Acc. Chem. Res. 39 184

    Article  Google Scholar 

  11. Smith S O, Myers A B, Pardoen J A, Winkel C, Mulder P P J, Lugtenburg J and Mathies R A 1984 Proc. Natl. Acad. Sci. USA 81 2055

    Article  CAS  Google Scholar 

  12. Smith S O, Myers A B, Mathies R A, Pardoen J A, Winkel C, Van Den Berg E M M and Lugtenburg J 1985 Biophys. J. 47 653

    Article  CAS  Google Scholar 

  13. Hudson B S and Birge R R 1999 J. Phys. Chem. A 103 2274

    Article  CAS  Google Scholar 

  14. Buda F, Giannozzi P and Mauri F 2000 J. Phys. Chem. B 104 9048

    Article  CAS  Google Scholar 

  15. Elia G R, Childs R F, Britten J F, Yang D S C and Santarsiero B D 1996 Can. J. Chem. 74 591401

    Article  Google Scholar 

  16. Mathies R A, Cruz C H B, Pollard W T and Shank C V 1988 Science 240 777

    Article  CAS  Google Scholar 

  17. Dobler J, Zinth W, Kaiser W and Oesterhelt D 1988 Chem. Phys. Lett. 144 215.

    Article  CAS  Google Scholar 

  18. Zinth W and Oesterhelt D 1991 Photobiology (ed) E Ricklis (New York: Plenum Press) pp. 531

    Chapter  Google Scholar 

  19. Arlt T, Schmidt S, Zinth W, Haupts U and Oesterhelt D 1995 Chem.Phys. Lett. 241 559

    Article  CAS  Google Scholar 

  20. Xu D, Martin C and Schulten K 1996 Biophys. J. 70 453

    Article  CAS  Google Scholar 

  21. Norton J E and Houk K N 2006 Mol. Phys. 104 993

    Article  CAS  Google Scholar 

  22. Garavelli M 2006 Theor. Chem. Acc. 116 87

    Article  CAS  Google Scholar 

  23. Cembran A, Bernardi F, Olivucci M and Garavelli M 2005 Proc. Natl. Acad. Sci. 102 6255

    Article  CAS  Google Scholar 

  24. Ruiz D S, Cembran A, Garavelli M, Olivucci M and Fu W 2002 Photochem. Photobiol. 76 622

    Article  CAS  Google Scholar 

  25. Dobado J A and Nonella M 1996 J. Phys. Chem. 100 18282

    Article  CAS  Google Scholar 

  26. Conti I, Bernardi F, Orlandi G and Garavelli M 2006 Mol. Phys. 104 915

    Article  CAS  Google Scholar 

  27. Conti I and Garavelli M 2007 J. Photochem. Photobiol. A: Chemistry 190 258

    Article  CAS  Google Scholar 

  28. Ertl P 1990 Collect. Czech. Chem. Commun. 55 2874

    Article  CAS  Google Scholar 

  29. Martin C H and Birge R R 1998 J. Phys. Chem. A 102 852

    Article  CAS  Google Scholar 

  30. Tavernelli I, Röhrig U F and Rothlisberger U 2005 Mol. Phys. 103 963

    Article  CAS  Google Scholar 

  31. Stewart J J P 1989 J. Comput. Chem. 10 209

    Article  CAS  Google Scholar 

  32. Stewart J J P 1989 J. Comput. Chem. 10 221

    Article  CAS  Google Scholar 

  33. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J J, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347

    Article  CAS  Google Scholar 

  34. Brooks B and Schaefer H F 1979 J. Chem. Phys. 70 5092

    Article  CAS  Google Scholar 

  35. Brooks B, Laidig W, Saxe P, Handy N and Schaefer H F 1980 Phys. Scripta 21 312

    Article  CAS  Google Scholar 

  36. Chattopadhyay A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165101

    Article  Google Scholar 

  37. Chattopadhyay A 2010 J. Chem. Sci. 122 259

    Article  CAS  Google Scholar 

  38. Davidson E R 1975 J. Comput. Phys. 17 87

    Article  Google Scholar 

  39. Elbert S T 1987 Theoret. Chim. Acta 71 169

    Article  CAS  Google Scholar 

  40. Weinhold F 1970 J. Chem. Phys. 54 1874

    Article  Google Scholar 

  41. Bauschlicher C W and Langhoff S R 1991 Theoret. Chim. Acta 79 93

    Article  CAS  Google Scholar 

  42. Koseki S and Gordon M S 1987 J. Mol. Spectrosc. 123 392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANJAN CHATTOPADHYAY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHATTOPADHYAY, A. Comparative study of spectroscopic properties of the low-lying electronic states of 2,4-pentadien-1-iminium cation and its N-substituted analogues. J Chem Sci 124, 985–994 (2012). https://doi.org/10.1007/s12039-012-0311-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-012-0311-8

Keywords

Navigation