Skip to main content
Log in

Displacement of aqua ligands from the hydroxopentaaquarhodium(III) ion by 1-hydroxybenzotriazole (HOBt): A kinetic and mechanistic approach

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The kinetics of the reaction of HOBt with [Rh(H2O)5(OH)]2 +  has been studied spectrophotometrically in aqueous medium as a function of [Rh(H2O)5OH2 + ], [HOBt], pH and temperature. At pH 4.3, the reaction proceeds via a rapid outer sphere association complex formation step followed by two consecutive steps. The first of these involves ligand-assisted anation, while the second involves chelation as the second aqua ligand is displaced. The association equilibrium constant for the outer sphere complex formation has been evaluated together with the rate constants for the two subsequent steps. The activation parameters for both steps have been evaluated using Eyrings equation. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants are also consistent with an associative mode of activation. The product of the reaction has been characterized by IR and ESI-mass spectroscopic analysis.

The kinetics of the reaction of HOBt with [Rh(H2O)5(OH)]2+ has been studied spectrophotometrically in aqueous medium as a function of [Rh(H2O)5OH2+], [HOBt], pH and temperature. At pH 4.3, the reaction proceeds via a rapid outer sphere association complex formation step followed by two consecutive steps. The first of these involves ligand-assisted anation, while the second involves chelation as the second aqua ligand is displaced. The association equilibrium constant for the outer sphere complex formation has been evaluated together with the rate constants for the two subsequent steps. The activation parameters for both steps have been evaluated using Eyrings equation. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants are also consistent with an associative mode of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberg B and Vancamp L 1970 Cancer Res. 30 1799

    CAS  Google Scholar 

  2. Davidson J P, Faber P J, Fisher IV R G, Mansy S, Peresie H J, Rosenberg B and Vancamp A L 1975 Cancer Chemother. Pt. 1 59, 287

    Google Scholar 

  3. Roberts J J, Knox R J, Friedlos F and Lydall D A, in 1986 Biochemical mechanisms of platinum antitumour drugs. eds. D. C. H. Me Brien and T. F. Slater, Oxford: IRL Press, p. 29

    Google Scholar 

  4. Sava G and Bergamo A 2007 Dalton Trans. 13 1267

    Google Scholar 

  5. Groessl M, Reisner E, Hartinger C G, Eichinger R, Semenova O, Timerbaev A R, Jakupec M A, Arion V B and Keppler B J 2007 Med. Chem. 50 2185

    Article  CAS  Google Scholar 

  6. De Paula Q A, Batista A A, Nascimento O R, Costa-Filho A J, Schultz M S, Bonfadini M R and Oliva G J 2000 Braz. Chem. Soc. 11 530

    Article  Google Scholar 

  7. Paula Q A, Batista A A, Castellano E E and Ellena J J 2002 Inorg. Biochem. 90 144

    Article  CAS  Google Scholar 

  8. Vock C A, Ang W H, Scolaro C, Phillips A D, Lagopoulos L, Juillerat-Jenneret L, Sava G, Scopelliti R and Dyson P J 2007 J. Med. Chem. 50 2166

    Article  CAS  Google Scholar 

  9. Timerbaev A R, Hartinger C G, Aleksenko S S and Keppler B K 2006 Chem. Rev. 106 2224

    Article  CAS  Google Scholar 

  10. Alessio E 2004 Chem. Rev. 104 4203

    Article  CAS  Google Scholar 

  11. Pieper T, Borsky K, Keppler B K 1999 In: Clarke M J and Sadler P J (eds) Metallopharmaceuticals I—DNA interactions. Springer, Europe, London/UK, pp 171

    Chapter  Google Scholar 

  12. Sava G, Giraldi T, Mestroni G and Zassinovich G 1983 Chem. Biol. Interact. 45 1

    Article  CAS  Google Scholar 

  13. (a) Ray S, Mohan R, Singh J K, Samantaray M K, Shaikh M M, Panda D and Ghosh P 2007 J. Am. Chem. Soc. 129 15042; (b) Hickey J L, Ruhayel R A, Barnard P J, Baker M V, Berners-Price S J and Filipovska A 2008 J. Am. Chem. Soc. 130 12570; (c) Teyssot M-L, Jarrousse A-S, Chevry A, De Haze A, Beaudoin C, Manin M, Nolan S P, Diez-Gonzales S, Morel L and Gautier A 2009 Chem. Eur. J. 15 314

  14. Hindi K M, Panzner M J, Tessier C A, Cannon C L and Youngs W J 2009 Chem. Rev. 109 3859

    Article  CAS  Google Scholar 

  15. Katsaros N and Anagnostopoulou A 2002 Crit. Rev. Oncol. Hematol. 42 297

    Article  CAS  Google Scholar 

  16. Pruchnik F P, Jakimowicz P, Cuinik Z, Zakrzewskaczerwinska J, Opolski A, Weitrzyk J and Wojdat E 2002 Inorg.Chim. Acta. 334 59

    Article  CAS  Google Scholar 

  17. Medvetz D A, Stakleff K D, Schreiber T, Custer P D, Hindi K, Panzner M J, Blanco D D, Taschner M J, Tessier C A and Youngs W J 2007 J. Med. Chem. 50 1703

    Article  CAS  Google Scholar 

  18. Loganathan D and Morrison 2006 Photochem. Photobiol. 82 237

    Article  CAS  Google Scholar 

  19. Swaminathan K and Harris G M 1996 J. Am. Chem. Soc. 88 4411

    Article  Google Scholar 

  20. Buchacck R J and Harris G M 1976 Inorg. Chem. 15 926

    Article  Google Scholar 

  21. Ghosh A K, Ghosh S and De G S 1996 Indian J. Chem. 35A 342

    CAS  Google Scholar 

  22. Ghosh A K, Sengupta P S and De G S 1997 Indian J. Chem. 36A 611

    CAS  Google Scholar 

  23. Mukhopadhyay S K, Ghosh A K and De G S 1999 Indian J. Chem. 38A 895

    CAS  Google Scholar 

  24. Sheehan J C and Hess G P 1955 J. Am. Chem. Soc. 77 1067

    Article  CAS  Google Scholar 

  25. König W and Geiger R 1970 Chem. Ber. 103 788

    Article  Google Scholar 

  26. Ayres G H and Forrester J S 1957 J. Inorg. Nucl. Chem. 3 365

    Article  CAS  Google Scholar 

  27. Wolsey W C, Reynolds C A and Kleinberg J 1963 Inorg. Chem. 2 463

    Article  CAS  Google Scholar 

  28. Steel D and Verhoeven P F M 2001 Vibrational Spectroscopy 25 29

    Article  Google Scholar 

  29. Ohkubo A, Ezawa Y, Seio K and Sekine M 2002 Nucleic Acids Research Supplement No. 2, 29-30 Oxford University Press

  30. Banyai I, Glaser J, Read M C and Stroem M S 1995 Inorg. Chem. 34 2423

    Article  CAS  Google Scholar 

  31. Weyh J A and Hamm R E 1969 Inorg. Chem. 8 2298

    Article  CAS  Google Scholar 

  32. Jeffrey G A 1997 An introduction to hydrogen bonding, Oxford: Oxford University Press

    Google Scholar 

  33. Desiraju G R and Steiner T T 1999 The weak hydrogen bonding in structural chemistry and biology, Oxford: Oxford University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALAK K GHOSH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BERA, B.K., MANDAL, A., MAITY, B. et al. Displacement of aqua ligands from the hydroxopentaaquarhodium(III) ion by 1-hydroxybenzotriazole (HOBt): A kinetic and mechanistic approach. J Chem Sci 124, 791–799 (2012). https://doi.org/10.1007/s12039-012-0287-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-012-0287-4

Keywords

Navigation