Skip to main content

Advertisement

Log in

Effect of spontaneous arbuscular mycorrhizal colonization in bread wheat varieties on the incidence of foliar diseases and grain yield

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

This study aimed to determine the ability of different wheat genotypes to form a symbiosis with arbuscular mycorrhizal fungi (AMF) present in the field and the effect of such a symbiosis on disease severity and grain yield. A bioassay was performed during an agricultural cycle under field conditions in a randomized block factorial design. The factors used were application of fungicide (two levels: with and without fungicide) and wheat genotypes (six levels). Arbuscular mycorrhizal colonization, green leaf area index, and severity of foliar diseases were evaluated in the tillering and early dough stages. At maturity, the number of spikes per square metre the number of grains per spike, and the thousand-kernel weight were determined to estimate grain yield. In addition, the spores of Glomeromycota present in the soil were identified by morphological techniques. Spores belonging to 12 fungal species were recovered. Genotypic variability was found for arbuscular mycorrhization, with the cultivars Klein Liebre and Opata exhibiting the highest colonization values. The results obtained show a beneficial effect of mycorrhizal symbiosis on foliar disease resistance and grain yield in the controls, but the results varied in the case of fungicide treatment. A greater understanding of the ecological role of these microorganisms in agricultural systems can lead to more sustainable agronomic practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Błaszkowski J 2012 Glomeromycota (Kraków: W. Szafer Institute of Botany Polish Academy of Sciences)

  • Buysens C, Dupré De Boulois H and Declerck S 2015 Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza 25 277–288

    Article  CAS  PubMed  Google Scholar 

  • Cabello MN, Albanesi A and Brandan C 2013 Control de calidad de inoculantes formulados con hongos micorrícicos arbusculares (HMA); in Manual de procedimientos microbiológicos para la evaluación de inoculantes (Ed.) A Albanesi (Buenos Aires: REDCAI -DIMAyA – Asociación Argentina de Microbiología) pp 45–54

  • Chagnon PL, Bradley RL, Maherali H, et al. 2013 A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant. Sci. 18 484–491

    Article  CAS  PubMed  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, et al. 2016 InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina (http://www.infostat.com.ar)

  • Dean R, van Kan JA, Pretorius ZA, et al. 2012 The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13 414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Douds DD and Millner PD 1999 Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric. Ecosys. Environ. 74 77–93

    Article  Google Scholar 

  • Figueroa M, Hammond-Kosack KE and Solomon PS 2017 A review of wheat diseases-a field perspective. Mol. Plant. Pathol. 19 1523–1536

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorilli V, Vannini C, Ortolani F, et al. 2018 Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci. Rep. 8 9625

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey B, Vilarino A, Schüepp H, et al. 1994 Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol. Biochem. 26 711–717

    Article  CAS  Google Scholar 

  • Garcia de León D, Vahter T, Zobel M, et al. 2020 Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS One 15 e0233878

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaitán MAG, Wen S, Fetcher N, et al. 2005 Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, Guarea guidonia (Meliaceae). Acta Biol. Colomb. 10 41–47

    Google Scholar 

  • Gerdemann JW and Nicolson TH 1963 Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46 235–244

    Article  Google Scholar 

  • Gernns H, Alten H and Poehling HM 2001 Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen–is a compensation possible? Mycorrhiza 11 237–243

    Article  CAS  Google Scholar 

  • Hage-Ahmed K, Rosner K and Steinkellner S 2018 Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag. Sci. 75 583–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Dorrego A and Pares JM 2010 Evaluation of some fungicides on mycorrhizal symbiosis between two Glomus species from commercial inocula and Allium porrum L. seedlings. Span. J. Agric. Res. 8 s43–s50

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT and Cox TS 1993 Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can. J. Bot. 71 512–518

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T, et al. 2002 Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12 225–234

    Article  CAS  PubMed  Google Scholar 

  • Jecke FA, Mousegne FJ and Fascioli 2022 Evaluación de fungicidas para el control de enfermedades en trigo-campaña 2021 (AER San Antonio de Areco, INTA)

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, et al. 2012 Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38 651–664

    Article  CAS  PubMed  Google Scholar 

  • Kling M and Jakobsen I 1997 Direct application of carbendazim and propiconazole at field rates to the external mycelium of three arbuscular mycorrhizal fungi species: effect on 32P transport and succinate dehydrogenase activity. Mycorrhiza 7 33–37

    Article  CAS  Google Scholar 

  • Land S and Schönbeck F 1991 Influence of different soil types on abundance and seasonal dynamics of vesicular arbuscular mycorrhizal fungi in arable soils of North Germany. Mycorrhiza 1 39–44

    Article  Google Scholar 

  • Lehmann A, Barto EK, Powell JR, et al. 2012 Mycorrhizal responsiveness trends in annual crop plants and their wild relatives – a meta-analysis on studies from 1981 to 2010. Plant Soil 355 231–250

    Article  CAS  Google Scholar 

  • Lehnert H, Serfling A, Enders M, et al. 2017 Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum). New Phytol. 215 779–791

    Article  CAS  PubMed  Google Scholar 

  • Menéndez AB, Scervino JM and Godeas AM 2001 Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province. Argentina. Biol. Fertil. Soils 33 373–381

    Article  Google Scholar 

  • Miralles DJ and Slafer GA 1997 Radiation interception and radiation use efficiency of near-isogenic wheat lines with different height. Euphytica 97 201–208

    Article  Google Scholar 

  • Mustafa G, Randoux B, Tisserant B, et al. 2016 Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza 26 685–697

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, et al. 2003 Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69 2816–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, et al. 2005 Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 165 273–283

    Article  PubMed  Google Scholar 

  • Pellegrino E, Opik M, Bonari E, et al. 2015 Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil. Biol. Biochem. 84 210–217

    Article  CAS  Google Scholar 

  • Phillips JM and Hayman DS 1970 Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55 158–161

    Article  Google Scholar 

  • Pozo MJ, Jung SC, Martínez-Medina A, et al. 2013 Root allies: arbuscular mycorrhizal fungi help plants to cope with biotic stresses; in Symbiotic endophytes (Ed.) R Aroca (Berlin: Springer) pp 289–307

  • Priyadharsini P, Pandey RR and Muthukumar T 2012 Arbuscular mycorrhizal and dark septate fungal associations in shallot (Allium cepa L. var. aggregatum) under conventional agriculture. Acta. Bot. Croat. 71 159–175

    Article  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, et al. 2019 The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3 430–439

    Article  PubMed  Google Scholar 

  • Schalamuk S, Velázquez S, Chidichimo H, et al. 2003 Efecto de la siembra directa y labranza convencional sobre la colonización micorrícica y esporulación en trigo. Boletín Micológico 18 15–19

    Article  Google Scholar 

  • Schüßler A, Schwarzott D and Walker C 2001 A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105 1413–1421

    Article  Google Scholar 

  • Schüßler A and Walker C 2010 Glomeromycota species list (http://schuessler.userweb.mwn.de/amphylo/)

  • Shaner G and Finney RE 1977 The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67 1051–1056

    Article  CAS  Google Scholar 

  • Simón MR, Fleitas MC, Castro AC, et al. 2020 How foliar fungal diseases affect nitrogen dynamics, milling, and end-use quality of wheat. Front. Plant. Sci. 11 1568

    Article  Google Scholar 

  • Smith SE, Manjarrez M, Stonor R, et al. 2015 Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment, shown by tracking with radioactive phosphorus. Appl. Soil. Ecol. 96 68–74

    Article  Google Scholar 

  • Smith SE and Read D 2008 Mycorrhizal symbiosis 3rd edition (Amsterdam: Academic Press)

    Google Scholar 

  • Schmitz O, Danneberg G, Hundeshagen B, et al. 1991 Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J. Plant Physiol. 139 106–114

    Article  CAS  Google Scholar 

  • Thirkell TJ, Pastok D and Field KJ 2020 Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Chang. Biol. 26 1725–1738

    Article  PubMed  Google Scholar 

  • Walker  C, Mize CW and McNabb Jr. HS 1982 Populations of endogonaceous fungi at two locations in central Iowa. Can. J. Bot. 60  2518–2529 

  • Wijayawardene NN, Hyde KD, Al-Ani LKT, et al. 2020 Outline of fungi and fungus-like taxa. Mycosphere 11 1060–1456

    Article  Google Scholar 

  • Zadoks JC, Chang TT and Konzak CF 1974 A decimal code for the growth stages of cereals. Weed Res. 14 415–421

    Article  Google Scholar 

  • Zhang S, Lehmann A, Zheng W, et al. 2019 Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 222 543–555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Abarca.

Additional information

Corresponding editor: Jyothilakshmi Vadaserry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarca, C., Simón, M.R., Esquisabel, E. et al. Effect of spontaneous arbuscular mycorrhizal colonization in bread wheat varieties on the incidence of foliar diseases and grain yield. J Biosci 48, 12 (2023). https://doi.org/10.1007/s12038-023-00335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00335-5

Keywords

Navigation