Skip to main content
Log in

Restriction enzymes and their use in molecular biology: An overview

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Restriction enzymes have been identified in the early 1950s of the past century and have quickly become key players in the molecular biology of DNA. Forty years ago, the scientists whose pioneering work had explored the activity and sequence specificity of these enzymes, contributing to the definition of their enormous potential as tools for DNA characterization, mapping and manipulation, were awarded the Nobel Prize. In this short review, we celebrate the history of these enzymes in the light of their many different uses, as these proteins have accompanied the history of DNA for over 50 years representing active witnesses of major steps in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arber W 1965 Host-controlled modification of bacteriophage. Annu. Rev. Microbiol. 19 365–378

    Article  CAS  Google Scholar 

  • Balazs I 1992 Forensic applications. Curr. Opin. Biotechnol. 3 18–23

    Article  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P 2007 CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 1709–1712

    Article  CAS  Google Scholar 

  • Bertani G and Weigle JJ 1953 Host controlled variation in bacterial viruses. J. Bacteriol. 65 113–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird AP and Southern EM 1978 Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J. Mol. Biol. 118 27–47

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M and Davis RW 1980 Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32 314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ and Voytas DF 2010 Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 757–761

    Article  CAS  Google Scholar 

  • Cohen SN 2013 DNA cloning: a personal view after 40 years. PNAS 110 15521–15529

    Article  CAS  Google Scholar 

  • Cohen SN, Maitra U and Hurwitz J 1967 Role of DNA in RNA synthesis: XI. Selective transcription of λ DNA segments in vitro by RNA polymerase of Escherichia coli. J. Mol. Biol. 26 19–38

    Article  CAS  Google Scholar 

  • Cohen SN, Chang ACY and Hsu L 1972 Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA*. Proc. Natl. Acad. Sci. USA 69 2110–2114

    Article  CAS  Google Scholar 

  • Cozzarelli NR, Melechen NE, Jovin TM and Kornberg A 1967 Polynucleotide cellulose as a substrate for a polynucleotide ligase induced by phage T4. Biochem. Biophys. Res. Commun. 28 578–586

    Article  CAS  Google Scholar 

  • Danna K and Nathans D 1971 Specific cleavage of Simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc. Natl. Acad. Sci. USA 5 75–81

    Google Scholar 

  • Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J and Cogulu O 2015 Evolution of genetic techniques: Past, present, and beyond [WWW document]. BioMed Res. Int. https://doi.org/10.1155/2015/461524

    Article  Google Scholar 

  • Gaj T, Gersbach CA and Barbas CF 2013 ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31 397–405

    Article  CAS  Google Scholar 

  • Gefter ML, Becker A and Hurwitz J 1967 The enzymatic repair of DNA. I. Formation of circular lambda-DNA. Proc. Natl. Acad. Sci. USA 58 240–247

    Article  CAS  Google Scholar 

  • Gellert M 1967 Formation of covalent circles of lambda DNA by E. coli extracts. Proc. Natl. Acad. Sci. USA 57 148–155

    Article  CAS  Google Scholar 

  • Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K and Riggs AD 1979 Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. USA 76 106–110

    Article  CAS  Google Scholar 

  • Grummt I and Gross HJ 1980 Structural organization of mouse rDNA: comparison of transcribed and non-transcribed regions. Mol. Gen. Genet. 177 223–229

    Article  CAS  Google Scholar 

  • Gupta R, Capalash N and Sharma P 2012 Restriction endonucleases: natural and directed evolution. Appl. Microbiol. Biotechnol. 94 583–599

    Article  CAS  Google Scholar 

  • Heather JM and Chain B 2016 The sequence of sequencers: The history of sequencing DNA. Genomics 107 1–8

    Article  CAS  Google Scholar 

  • Hershey AD, Burgi E and Ingraham L 1963 Cohesion of DNA molecules isolated from phage lambda. Proc. Natl. Acad. Sci. USA 49 748–755

    Article  CAS  Google Scholar 

  • Hewish DR and Burgoyne LA 1973 Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Commun. 52 504–510

    Article  CAS  Google Scholar 

  • Hickson FT, Roth TF and Helinski DR 1967 Circular DNA forms of a bacterial sex factor. Proc. Natl. Acad. Sci. USA 58 1731–1738

    Article  CAS  Google Scholar 

  • Holsinger KE and Jansen RK 1993 Phylogenetic analysis of restriction site data; in: Methods in enzymology, molecular evolution: Producing the biochemical data (eds) Zimmer EA, White TJ, Cann RL, Wilson AC (Cambridge, USA: Academic Press) pp 439–455

    Chapter  Google Scholar 

  • Hörz W, Igo-Kemenes T, Pfeiffer W and Zachau HG 1976 Specific cleavage of chromatin by restriction nucleases. Nucleic Acids Res. 3 3213–3226

    Article  Google Scholar 

  • Jackson DA, Symons RH and Berg P 1972 Biochemical method for inserting New genetic information into DNA of Simian virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69 2904–2909

    Article  CAS  Google Scholar 

  • Jensen RH, Wodzinski RJ and Rogoff MH 1971 Enzymatic addition of cohesive ends to T7 DNA. Biochem. Biophys. Res. Commun. 43 384–392

    Article  CAS  Google Scholar 

  • Jiang F and Doudna JA 2017 CRISPR–cas9 structures and mechanisms. Annu. Rev. Biophys. 46 505–529

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E 2012 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–821

    Article  CAS  Google Scholar 

  • Kelly TJ and Smith HO 1970 A restriction enzyme from Hemophilus influenzae. II. J. Mol. Biol. 51 393–409

    Article  CAS  Google Scholar 

  • Khan S, Ullah MW, Siddique R, Nabi G, Manan S, Yousaf M and Hou H 2016 Role of recombinant DNA technology to improve life. Int. J. Genomics 2016 1–14

    Google Scholar 

  • Kim H and Kim J-S 2014 A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15 321–334

    Article  CAS  Google Scholar 

  • Knizewski L, Kinch LN, Grishin NV, Rychlewski L and Ginalski K 2007 Realm of PD–(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC Struct. Biol. 7 40

    Article  Google Scholar 

  • Kornberg RD 1974 Chromatin structure: a repeating unit of histones and DNA. Science 184 868–871

    Article  CAS  Google Scholar 

  • Lederberg J 1952 Cell genetics and hereditary symbiosis. Physiol. Rev. 32 403–430

    Article  CAS  Google Scholar 

  • Lin I-H 2018 Whole genome DNA methylation analysis using next-generation sequencing (BS-seq). Methods Mol. Biol. 1667 223–287

    Article  CAS  Google Scholar 

  • Lipchitz L and Axel R 1976 Restriction endonuclease cleavage of satellite DNA in intact bovine nuclei. Cell 9 355–364

    Article  CAS  Google Scholar 

  • Liu Q, Segal DJ, Ghiara JB and Barbas CF 1997 Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. PNAS 94 5525–5530

    Article  CAS  Google Scholar 

  • Lobban PE and Kaiser AD 1973 Enzymatic end-to-end joining of DNA molecules. J. Mol. Biol. 78 453–471

    Article  CAS  Google Scholar 

  • Luria SE and Human ML 1952 A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64 557–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD and Rebar EJ 2011 A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29 143–148

    Article  CAS  Google Scholar 

  • Morrow JF, Cohen SN, Chang ACY, Boyer HW, Goodman HM and Helling RB 1974 Replication and transcription of eukaryotic DNA in Esherichia coli. Proc. Natl. Acad. Sci. USA 71 1743–1747

    Article  CAS  Google Scholar 

  • Noll M 1974 Subunit structure of chromatin. Nature 251 249–251

    Article  CAS  Google Scholar 

  • Olivera BM and Lehman IR 1967 Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. Proc. Natl. Acad. Sci. USA 57 1426–1433

    Article  CAS  Google Scholar 

  • Pfeiffer W, Horz W, Igo-Kemenes T and Zachau HG 1975 Restriction nucleases as probes of chromatin structure. Nature 258 450–452

    Article  CAS  Google Scholar 

  • Pingoud A, Fuxreiter M, Pingoud V and Wende W 2005 Type II restriction endonucleases: Structure and mechanism. Cell. Mol. Life Sci. 62 685–707

    Article  CAS  Google Scholar 

  • Rill R and Van Holde KE 1973 Properties of nuclease-resistant fragments of calf thymus chromatin. J. Biol. Chem. 248 1080–1083

    CAS  PubMed  Google Scholar 

  • Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal, RM, Degtyarev SK, et al. 2003 A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 31 1805–1812

    Article  CAS  Google Scholar 

  • Sajantila A and Budowle B 1991 Identification of individuals with DNA testing. Ann. Med. 23 637–642

    Article  CAS  Google Scholar 

  • Smith HO and Wilcox KW 1970 A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 51 379–391

    Article  CAS  Google Scholar 

  • Southern EM 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98 503–517

    Article  CAS  Google Scholar 

  • Weatherall DJ, Old JM, Thein SL, Wainscoat JS and Clegg JB 1985 Prenatal diagnosis of the common haemoglobin disorders. J. Med. Genet. 22 422–430

    Article  CAS  Google Scholar 

  • Weiss B and Richardson CC 1967 Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl. Acad. Sci. USA 57 1021–1028

    Article  CAS  Google Scholar 

  • Williams RJ 2003 Restriction endonucleases: Classification, properties, and applications. Mol. Biotechnol. 23 225–243

    Article  CAS  Google Scholar 

  • Wilson GG and Murray NE 1991 Restriction and modification systems. Annu. Rev. Genet. 25 585–627

    Article  CAS  Google Scholar 

  • Yoshimori R, Roulland-Dussoix D and Boyer HW 1972 R factor-controlled restriction and modification of deoxyribonucleic acid: Restriction mutants. J. Bacteriol. 112 1275–1279

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Camilloni.

Additional information

Communicated by Sudha Bhattacharya.

Corresponding editor: Sudha Bhattacharya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Felice, F., Micheli, G. & Camilloni, G. Restriction enzymes and their use in molecular biology: An overview. J Biosci 44, 38 (2019). https://doi.org/10.1007/s12038-019-9856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9856-8

Keywords

Navigation