Skip to main content
Log in

Expressions of visual pigments and synaptic proteins in neonatal chick retina exposed to light of variable photoperiods

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Light causes damage to the retina, which is one of the supposed factors for age-related macular degeneration in human. Some animal species show drastic retinal changes when exposed to intense light (e.g. albino rats). Although birds have a pigmented retina, few reports indicated its susceptibility to light damage. To know how light influences a cone-dominated retina (as is the case with human), we examined the effects of moderate light intensity on the retina of white Leghorn chicks (Gallus g. domesticus). The newly hatched chicks were initially acclimatized at 500 lux for 7 days in 12 h light: 12 h dark cycles (12L:12D). From posthatch day (PH) 8 until PH 30, they were exposed to 2000 lux at 12L:12D, 18L:6D (prolonged light) and 24L:0D (constant light) conditions. The retinas were processed for transmission electron microscopy and the level of expressions of rhodopsin, S- and L/M cone opsins, and synaptic proteins (Synaptophysin and PSD-95) were determined by immunohistochemistry and Western blotting. Rearing in 24L:0D condition caused disorganization of photoreceptor outer segments. Consequently, there were significantly decreased expressions of opsins and synaptic proteins, compared to those seen in 12L:12D and 18L:6D conditions. Also, there were ultrastructural changes in outer and inner plexiform layer (OPL, IPL) of the retinas exposed to 24L:0D condition. Our data indicate that the cone-dominated chick retina is affected in constant light condition, with changes (decreased) in opsin levels. Also, photoreceptor alterations lead to an overall decrease in synaptic protein expressions in OPL and IPL and death of degenerated axonal processes in IPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ashby RA, Ohlendorf and Schaeffel F 2009 The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest. Ophthalmol. Vis. Sci. 50 5348–5354

    Article  PubMed  Google Scholar 

  • Basha AA, Mathangi DC, Shyamala R and Rao RK 2014 Protective effect of light emitting diode phototherapy on fluorescentlight induced retinal damage in Wistar strain albino rats. Ann. Anat. 196 312–316

    Article  Google Scholar 

  • Beatty S, Koh H, Phil M, Henson D and Boulton M 2000 The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 45 115–134

    Article  CAS  PubMed  Google Scholar 

  • Cebulla CM, Zelinka CP, Scott MA, Lubow M, Bingham A, Rasiah S, Mahmoud AM and Fischer AJ 2012 A chick model of retinal detachment: cone rich and novel. PLoS One 7 e44257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Belkin M, Yehezkel O, Solomon AS and Polat U 2011 Dependency between light intensity and refractive development under light-dark cycles. Exp. Eye Res. 92 40–46

    Article  CAS  PubMed  Google Scholar 

  • Curcio CA, Medeiros NE and Millican CL 1996 Photoreceptor loss in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 37 1236–1249

    CAS  PubMed  Google Scholar 

  • Dagar S, Nagar S, Goel M, Cherukuri P and Dhingra NK 2014 Loss of photoreceptors results in upregulation of synaptic proteins in bipolar cells and amacrine cells. PLoS One 9 e90250

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA and Bredt DS 2000 PSD-95 involvement in maturation of excitatory synapses. Science 290 1364–1368

    CAS  PubMed  Google Scholar 

  • Gabilondo I, Martínez-Lapiscina EH, Fraga-Pumar E, Ortiz-Perez S, Torres-Torres R, Andorra M, Llufriu S, Zubizarreta I, et al. 2015 Dynamics of retinal injury after acute optic neuritis. Ann. Neurol. 77 517–528

    Article  PubMed  Google Scholar 

  • Garcia-Martin E, Larrosa JM, Polo V, Satue M, Marques ML, Alarcia R, Seral M, Fuertes I, et al. 2014 Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. Am J. Ophthalmol. 157 470–478

    Article  PubMed  Google Scholar 

  • Grimm C, Wenzel A, Williams T, Rol P, Hafezi F and Remé C 2001 Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest. Ophthalmol. Vis. Sci. 42 497–505

    CAS  PubMed  Google Scholar 

  • Hart NS 2001 The visual ecology of avian photoreceptors. Prog. Retin. Eye Res. 20 675–703

    Article  CAS  PubMed  Google Scholar 

  • Hart NS, Lisney TJ and Collin SP 2006 Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity. J. Exp. Biol. 209 4776–4787

    Article  PubMed  Google Scholar 

  • Hering H and Kröger S 1996 Formation of synaptic specializations in the inner plexiform layer of the developing chick retina. J. Comp. Neurol. 375 393–405

    Article  CAS  PubMed  Google Scholar 

  • Jha KA, Nag TC, Kumar V, Kumar P, Kumar B, Wadhwa S and Roy TS 2015 Differential expression of AQP1 and AQP4 in avascular chick retina exposed to moderate light of variable photoperiods. Neurochem. Res. 40 2153–2166

    Article  CAS  PubMed  Google Scholar 

  • Jones BW and Marc RE 2005 Retinal remodeling during retinal degeneration. Exp. Eye Res. 81 123–137

    Article  CAS  PubMed  Google Scholar 

  • Kihara AH, Santos TO, Paschon V, Matos RJB and Britto LRG 2008 Lack of photoreceptor signaling alters the expression of specific synaptic proteins in the retina. Neuroscience 151 995–1005

    Article  CAS  PubMed  Google Scholar 

  • Koulen P, Fletcher EL, Craven SE, Bredt DS and Wässle H 1998 Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. J. Neurosci. 18 10136–10149

    CAS  PubMed  Google Scholar 

  • Kumar V, Nag TC, Sharma U, Jagannathan NR and Wadhwa S 2014 Differential effects of prenatal chronic high-decibel noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus). Neuroscience 269 302–317

    Article  CAS  PubMed  Google Scholar 

  • Li T, Troilo D, Glasser A and Howland HC 1995 Constant light produces severe corneal flattening and hyperopia in chickens. Vis. Res. 35 1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Li T, Howland HC and Troilo D 2000 Diurnal illumination patterns affect the development of the chick eye. Vis. Res. 40 2387–2393

    Article  CAS  PubMed  Google Scholar 

  • Li F, Cao W and Anderson RE 2001 Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp. Eye Res. 73 569–577

    Article  CAS  PubMed  Google Scholar 

  • Linberg KA, Sakai T, Lewis GP and Fisher SK 2002 Experimental retinal detachment in the cone-dominant ground squirrel retina: morphology and basic immunocytochemistry. Vis. Neurosci. 19 603–619

    Article  PubMed  Google Scholar 

  • Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK and Organisciak DT 2008 Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol. Vis. 14 782–806

    PubMed  PubMed Central  Google Scholar 

  • Marshall J, Mellerio J and Palmer DA 1972 Damage to pigeon retinae by moderate illumination from fluorescent lamps. Exp. Eye Res. 14 164–169

    Article  CAS  PubMed  Google Scholar 

  • Montiani-Ferreira F, Fischer A, Cernuda-Cernuda R, Kiupel M, DeGrip WJ, Sherry D, Cho SS, Shaw GC, et al. 2005 Detailed histopathologic characterization of the retinopathy, globe enlarged (rge) chick phenotype. Mol. Vis. 11 11–27

    CAS  PubMed  Google Scholar 

  • Morris VB and Shorey CD 1967 An electron microscope study of types of receptor in the chick retina. J. Comp. Neurol. 129 313–340

    Article  CAS  PubMed  Google Scholar 

  • Nag TC and Wadhwa S 2001 Differential expression of syntaxin-1 and synaptophysin in the developing and adult human retina. J. Biosci. 26 179–191

    Article  CAS  PubMed  Google Scholar 

  • Nag TC and Wadhwa S 2012 Ultrastructure of the human retina in aging and various pathological states. Micron. 43 759–781

    Article  PubMed  Google Scholar 

  • Noell WK, Walker VS, Kang BS and Berman S 1966 Retinal damage by light in rats. Investig. Ophthalmol. 5 450–473

    CAS  Google Scholar 

  • Okano T, Kojima D, Fukada Y, Shichida Y and Yoshizawa T 1992 Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc. Natl. Acad. Sci. USA 89 5932–5936

  • Organisciak DT and Vaughan DK 2010 Retinal light damage: mechanisms and protection. Prog. Retin. Eye Res. 29 113–134

    Article  PubMed  Google Scholar 

  • Organisciak DT, Darrow RM, Barsalou L, Darrow RA, Kutty RK, Kutty G and Wiggert B 1998 Light history and age-related changes in retinal light damage. Invest. Ophthalmol. Vis. Sci. 39 1107–1116

    CAS  PubMed  Google Scholar 

  • Penn JS, Thum LA and Naash MI 1989 Photoreceptor physiology in the rat is governed by the light environment. Exp. Eye Res. 49 205–215

    Article  CAS  PubMed  Google Scholar 

  • Pérez J and Perentes E 1994 Light-induced retinopathy in the albino rat in long-term studies. An immunohistochemical and quantitative approach. Exp. Toxicol. Pathol. 46 229–235

    Article  PubMed  Google Scholar 

  • Read SA, Collins MJ and Vincent SJ 2015 Light exposure and eye growth in childhood light exposure and eye growth in childhood. Invest. Ophthalmol. Vis. Sci. 56 6779–6787

    Article  PubMed  Google Scholar 

  • Reese CD 2008 Industrial safety and health for administrative services (Boca Raten: CRC Press)

    Google Scholar 

  • Sanyal T, Kumar V, Nag TC, Jain S, Sreenivas V and Wadhwa S 2013 Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks. PLoS One 8 e67347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, Kobayashi S, Ishida S, et al. 2010 Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53 971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL and Martin LJ 1997 Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J. Neuropathol. Exp. Neurol. 56 933–944

    Article  CAS  PubMed  Google Scholar 

  • Szél A and Röhlich P 1992 Two cone types of rat retina detected by anti-visual pigment antibodies. Exp. Eye Res. 55 47–52

    Article  PubMed  Google Scholar 

  • Thomson LR, Toyoda Y, Langner A, Delori FC, Garnett KM, Craft N, Nichols CR, Cheng KM, et al. 2002 Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail. Invest. Ophthalmol. Vis. Sci. 43 3538–3549

    PubMed  Google Scholar 

  • Van Guilder HD, Brucklacher RM, Patel K, Ellis RW, Freeman WM and Barber AJ 2008 Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur. J. Neurosci. 28 1–11

    Google Scholar 

  • Wang X, Tay SSW and Ng YK 2002 An electron microscopic study of neuronal degeneration and glial cell reaction in the retina of glaucomatous rats. Histol. Histopathol. 17 1043–1057

    CAS  PubMed  Google Scholar 

  • Wasowicz M, Morice C, Ferrari P, Callebert J and Versaux-Botteri C 2002 Long-term effects of light damage on the retina of albino and pigmented rats. Invest. Ophthalmol. Vis. Sci. 43 813–820

    PubMed  Google Scholar 

  • Wenzel A, Grimm C, Samardzija M and Remé CE 2005 Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog. Retin. Eye Res. 24 275–306

    Article  CAS  PubMed  Google Scholar 

  • Wiegand RD, Giusto NM, Rapp LM, Anderson RE 1983 Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest. Ophthalmol. Vis. Sci. 24 1433–1435

Download references

Acknowledgements

The work was financially supported by Science and Engineering Research Board, DST, New Delhi, India (No. AS-27/2012, TCN). KAJ received fellowships from UGC (New Delhi). The TEM work was carried out at SAIF, AIIMS, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas C Nag.

Additional information

Corresponding editor: Neeraj Jain

[Jha Ka, Nag TC, Wadhwa S and Roy TS 2016 Expressions of visual pigments and synaptic proteins in neonatal chick retina exposed to light of variable photoperiods. J. Biosci.]

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, K.A., Nag, T.C., Wadhwa, S. et al. Expressions of visual pigments and synaptic proteins in neonatal chick retina exposed to light of variable photoperiods. J Biosci 41, 667–676 (2016). https://doi.org/10.1007/s12038-016-9637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9637-6

Keywords

Navigation