Skip to main content
Log in

Monotremes and marsupials: Comparative models to better understand the function of milk

  • Commentary
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Beg OU, von Bahr-Lindstrom H, Zaidi ZH and Jornvall H 1986 A camel milk whey protein rich in half-cystine. Primary structure, assessment of variations, internal repeat patterns, and relationships with neurophysin and other active polypeptides. Eur. J. Biochem. 159 195–201

    Article  PubMed  CAS  Google Scholar 

  • Berseth CL, Lichtenberger LM and Morriss FH Jr 1983 Comparison of the gastrointestinal growth-promoting effects of rat colostrum and mature milk in newborn rats in vivo. Am. J. Clin. Nutr. 37 52–60

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds O, Cardillo M, Jones K, MacPhee R, Beck R and Grenyer R 2007 The delayed rise of present-day mammals. Nature 446 507–512

    Article  PubMed  CAS  Google Scholar 

  • Blackburn DG 1993 Lactation: historical patterns and potential for manipulation. J. Dairy Sci. 76 3195–3212

    Article  PubMed  CAS  Google Scholar 

  • Bonner WN 1984 Lactation strategies in pinnipeds: problems for a marine mammalian group. Symp. Zool. Soc. Lond. 51 253–272

    Google Scholar 

  • Brennan AJ, Sharp JA, Lefèvre C, Topcic D, Auguste A, Digby M and Nicholas KR 2007 The tammar wallaby and fur seal: models to examine local control of lactation. J. Dairy Sci. 90 Suppl 1 E66–E75

    Article  PubMed  Google Scholar 

  • Campbell S, Rosen J, Hennighausen L, Strech-Jurk U and Sippel A 1984 Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12 8685–97

    Article  PubMed  CAS  Google Scholar 

  • Capuco AV and Akers RM 2009 The origin and evolution of lactation. J. Biol. 8 37.32–37.34

    Article  Google Scholar 

  • Daly KA, Digby MR, Lefèvre C, Nicholas KR, Deane EM and Williamson P 2008 Identification, characterization and expression of cathelicidin in the pouch young of tammar wallaby (Macropus eugenii). Comp. Biochem. Physiol. 149 524–533

    Article  Google Scholar 

  • Devinoy E, Hubert C, Schaerer E, Houdebine L and Kraehenbuhl J 1988 Sequence of the rabbit whey acidic protein cDNA. Nucleic Acids Res. 16 8180

    Article  PubMed  CAS  Google Scholar 

  • Gallois M, Gidenne T, Tasca C, Caubet C, Coudert C, Milon A and Boullier S 2007 Maternal milk contains antimicrobial factors that protect young rabbits from enteropathogenic Escherichia coli infection. Clin. Vaccine Immunol. 14 585–592

    Article  PubMed  CAS  Google Scholar 

  • Griffiths M 1978 The biology of the monotremes (Academic Press)

  • Hajjoubi S, Rival-Gervier S, Hayes H, Floriot S, Eggen A, Piumi F, Chardon P, Houdebine LM and Thépot D 2006 Ruminants genome no longer contains Whey Acidic Protein gene but only a pseudogene. Gene 29 104–12

    Article  Google Scholar 

  • Hedges S and Kumar S 2009 The Timetree of life(USA: Oxford University Press)

    Google Scholar 

  • Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N and Stahle-Bäckdahl M 2003 The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. 120 379–89

    Article  PubMed  CAS  Google Scholar 

  • Hendry KA, Simpson KJ, Nicholas KR and Wilde CJ 1998 Autocrine inhibition of milk secretion in the lactating tammar wallaby (Macropus eugenii). J. Mol. Endocrinol. 21 169–177

    Article  PubMed  CAS  Google Scholar 

  • Hennighausen L and Sippel A 1982 Mouse Whey Acidic Protein is a novel member of the family of 'four-disulfide core' proteins. Nucleic Acids Res. 10 2677–2684

    Article  PubMed  CAS  Google Scholar 

  • Khalil E, Digby MR, Thomson PC, Lefèvre C, Mailer SL, Pooley C and Nicholas KR 2011 Acute involution in the tammar wallaby: identification of genes and putative novel milk proteins implicated in mammary gland function. Genomics 97 372–378

    Article  PubMed  CAS  Google Scholar 

  • Kojima T and Kitamura T 1999 A signal sequence trap based on a constitutively active cytokine receptor. Nature biotechnology 17 487–490

    Article  PubMed  CAS  Google Scholar 

  • Kwek JHL, Iongh RD, Digby MR, Renfree MB, Nicholas KR and Familari M 2009 Cross-fostering of the tammar wallaby (Macropus eugenii) pouch young accelerates fore-stomach maturation. Mech. Dev. 129 449–463

    Article  Google Scholar 

  • Lefèvre CM, Digby MR, Whitley JC, Strahm Y and Nicholas KR 2007 Lactation transcriptomics in the Australian marsupial, Macropus eugenii: transcript sequencing and quantification. BMC Genomics 8 417

    Article  PubMed  Google Scholar 

  • Lefèvre CM, Sharp JA and Nicholas KR 2009 Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals. Reprod, Fertility Dev. 21 1015–1027

    Article  Google Scholar 

  • Lefèvre CM, Sharp JA and Nicholas KR 2010 Evolution of Lactation: Ancient Origin and Extreme Adaptations of the Lactation System. Annu Rev Genomics Hum Genet. 11 219–238

    Article  PubMed  Google Scholar 

  • Leviton A, Dammann O, Engelke S, Allred E, Kuban KCK, O’Shea TM and Paneth N 2010 The clustering of disorders in infants born before the 28 week of gestation. Acta Paediat. 99 1795–800

    Article  PubMed  Google Scholar 

  • Linnaeus C 1758 Tomus I. Systemanaturae per regna trianaturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis Editiodecima, reformata Holmiae (LaurentiiSalvii) [1–4] 1–824

  • Maksimovic J, Sharp JA, Nicholas KR, Cocks BG and Savin K 2011 Conservation of the ST6Gal I gene and its expression in the mammary gland. Glycobiology 21 467–481

    Article  PubMed  CAS  Google Scholar 

  • Menzies KK, Lefèvre C, Sharp JA, Macmillan KL, Sheehy PA and Nicholas KR 2009 A novel approach identified the FOLR1 gene, a putative regulator of milk protein synthesis. Mamm. Genome 20 498–503

    Article  PubMed  CAS  Google Scholar 

  • Newsome CA, Shiell AW, Fall CHD, Phillips DIW, Shier R and Law CM 2003 Is birth weight related to later glucose and insulin metabolism?—a systematic review. Diabetic Med. 20 339–348

    Article  PubMed  CAS  Google Scholar 

  • Nicholas K, Simpson K, Wilson M, Trott J and Shaw D 1997 The tammar wallaby: A model to study putative autocrine-induced changes in milk composition. J. Mammary Gland Biol. Neoplasia 2 299–310

    Article  PubMed  CAS  Google Scholar 

  • Oftedal O, Boness D and Tedman R 1987 The behavior, physiology, and anatomy of lactation in the pinnipedia. Curr. Mamm. 1 175–245

    Google Scholar 

  • Oftedal OT 2002 The mammary gland and its origin during synapsid evolution. J. Mammary Gland Biol. Neoplasia 7 225–252

    Article  PubMed  Google Scholar 

  • Oliver SP and Mitchell BA 1983 Susceptibility of bovine mammary gland to infections during the dry period. J. Dairy Sci. 66 1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Palmer CA, Neville MC, Anderson SM and McManaman JL 2006 Analysis of lactation defects in transgenic mice. J. Mammary Gland Biol. Neoplasia 11 269–282

    Article  PubMed  Google Scholar 

  • Rival-Gervier S, Thépot D, Jolivet G and Houdebine LM 2003 Pig whey acidic protein gene is surrounded by two ubiquitously expressed genes. Biochem. Biophys. Acta 162 77–14

    Google Scholar 

  • Sharp JA, Cane KN, Mailer SL, Oosthuizen WH, Arnould JP and Nicholas KR 2006 Species-specific cell-matrix interactions are essential for differentiation of alveoli like structures and milk gene expression in primary mammary cells of the Cape fur seal (Arctocephalus pusillus pusillus). Matrix Biol. 25 430–442

    Article  PubMed  CAS  Google Scholar 

  • Sharp JA, Lefèvre C and Nicholas KR 2007 Molecular evolution of monotreme and marsupial whey acidic protein genes. Evol. Deve. 9 378–392

    Article  CAS  Google Scholar 

  • Sharp JA, Lefèvre C and Nicholas KR 2008 Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biol. 6 48

    Article  PubMed  Google Scholar 

  • Sharp JA, Digby M, Lefèvre CM, Mailer S, Khalil E, Topcic D, August A, Kwek J, Brennan A, Familari M and Nicholas KR 2009 The comparative genomics of tammar wallaby and fur seal lactation. Models to examine function of milk proteins; in Milk proteins: From expression to food (ed) A Thompson, M Boland and H Singh (Academic Press, USA) pp 55–80

    Google Scholar 

  • Shaykhiev R, Beisswenger C, Kandler K, Senske J, Puchner A, Damm T, Behr J and Bals R 2005 Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am. J. Physiol. Lung Cell Mol. Physiol. 289 L842–L848

    Article  PubMed  CAS  Google Scholar 

  • Simpson KJ, Bird P, Shaw D and Nicholas KR 1998 Molecular characterisation and hormone-dependent expression of the porcine Whey Acidic Protein gene. J. Mol. Endocrinol. 20 27–35

    Article  PubMed  CAS  Google Scholar 

  • Simpson KJ, Ranganathan S, Fisher JA, Janssens PA, Shaw DC and Nicholas KR 2000 The Gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactation. J. Biol. Chem. 275 23074–81

    Article  PubMed  CAS  Google Scholar 

  • Topcic D, Auguste A, Leo AAD, Lefèvre C, Digby MR and Nicholas KR 2009 Characterization of the tammar wallaby (Macropus eugenii) whey acidic protein gene: new insights into the function of the protein. Evol. Dev. 11 363–375

    Article  PubMed  CAS  Google Scholar 

  • Trott JF, Simpson KJ, Moyle RLC, Hearn CM, Shaw G, Nicholas KR and Renfree MB 2003 Maternal regulation of milk composition, milk production, and pouch young development during lactation in the tammar wallaby (Macropus eugenii). Biol. Reprod. 68 929–936

    Article  PubMed  CAS  Google Scholar 

  • Tyndale-Biscoe C and Renfree M 1987 Reproductive physiology of marsupials (Cambridge University Press)

  • Tyndale-Biscoe CH and Janssens PA 1988 The developing marsupial model for biomedical research (Berlin, Heidelberg: Springer-Verlag)

    Book  Google Scholar 

  • Waite R, Giraud A, Old J, Howlet M, Shaw G, Nicholas K and Familari M 2005 Cross-Fostering in Macropus eugenii Leads to Increased Weight but not Accelerated Gastrointestinal Maturation. J. Exp. Zool. 303A 331–344

    Article  Google Scholar 

  • Wang J, Wong ES, Whitley JC, Li J, Stringer JM, Short KR, Renfree MB, Belov K and Cocks BG 2011 Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One 6 e24030

    Article  PubMed  CAS  Google Scholar 

  • Wanyonyi SS, Sharp JA, Khalil, E, Lefèvre C and Nicholas KR 2011 Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 160 431–439

    Article  CAS  Google Scholar 

  • Watt AP, Sharp JA, Lefèvre C and Nicholas KR 2012 WFDC2 is differentially expressed in the mammary gland of the tammar wallaby and provides immune protection to the mammary gland and the developing pouch young. Dev. Comp. Immunol. 36 584–90

    Article  PubMed  CAS  Google Scholar 

  • Warner EA, Kanekanian AD and Andrews AT 2001 Bioactivity of milk proteins: 1. Anticariogenicity of whey proteins. Int. J. Dairy Technol. 54 151–153

    Article  CAS  Google Scholar 

  • Wilde CJ, Knight CH and Flint DJ 1999 Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia. 4 129–136

    Google Scholar 

  • Yamashiro Y, Sato M, Shimizu TOguchi S, Maruyama K and Kitamura S 1989 Possible biological growth factors in breast milk and postnatal development of the gastrointestinal tract. Acta Paediat. Jpn. 31 417–423

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Biragyn A, Hoover DM, Lubkowski J and Oppenheim JJ 2004 Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22 181–215

    Article  PubMed  Google Scholar 

  • Zanetti M, Gennaro R and Romeo D 1995 Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374 1–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjana Kuruppath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuruppath, S., Bisana, S., Sharp, J.A. et al. Monotremes and marsupials: Comparative models to better understand the function of milk. J Biosci 37, 581–588 (2012). https://doi.org/10.1007/s12038-012-9247-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9247-x

Keywords

Navigation