Skip to main content
Log in

A revisit of the mode of interaction of small transcription inhibitors with genomic DNA

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

One class of small molecules with therapeutic potential for treatment of cancer functions as transcription inhibitors via interaction with double-stranded DNA. Majority of the studies of the interaction with DNA have so far been reported under conditions nonexistent in vivo. Inside the cell, DNA is present in the nucleus as a complex with proteins known as chromatin. For the last few years we have been studying the interaction of these DNA-binding small molecules at the chromatin level with emphasis on the drug-induced structural alterations in chromatin. Our studies have shown that at the chromatin level these molecules could be classified in two broad categories: single-binding and dual-binding molecules. Single-binding molecules access only DNA in the chromatin, while the dual-binding molecules could bind to both DNA and the associated histone(s). Structural effects of the DNA-binding molecules upon chromatin in light of the above broad categories and the associated biological implications of the two types of binding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adhya D and Basu A 2010 Epigenetic modulation of host: new insights into immune evasion by viruses. J. Biosci. 35 647–663

    Article  PubMed  CAS  Google Scholar 

  • Ahn SY, Cho CH, Park KG, Lee HJ, Lee S, Park SK, Lee IK and Koh GY 2004 Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Am. J. Pathol. 164 1663–72

    Article  PubMed  CAS  Google Scholar 

  • Breslauer KJ, Remeta DP, Chou WY, Ferrante R, Curry J, Zaunczkowski D, Snyder JG and Marky LA 1987 Enthalpy-entropy compensations in drug-DNA binding studies. Proc. Natl. Acad. Sci. USA 84 8922–8926

  • Brown PM and Fox KR 1996 Minor groove binding ligands alter the rotational positioning of DNA fragments on nucleosome core particles. J. Mol. Biol. 262 671–685

    Article  PubMed  CAS  Google Scholar 

  • Chaires JB 1997 Energetics of drug-DNA interactions. Biopolymers 44 201–215

    Article  PubMed  CAS  Google Scholar 

  • Devi PG, Chakraborty PK and Dasgupta D 2009 Inhibition of a Zn(II)-containing enzyme, alcohol dehydrogenase, by anticancer antibiotics, mithramycin and chromomycin A3. J. Biol. Inorg. Chem. 14 347–359

    Article  PubMed  CAS  Google Scholar 

  • Ferrante RJ, Ryu H, Kubilus JK, D'mello S, Sugars KL, Lee J, Lu P, Smith K, et al. 2004 Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington's disease. J. Neurosci. 24 10335–10342

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Majumder P, Pradhan SK and Dasgupta D 2010 Mechanism of interaction of small transcription inhibitors with DNA in the context of chromatin and telomere. Biochim. Biophys. Acta 1799 795–809

    Google Scholar 

  • Hajihassan Z and Rabbani-Chadegani A 2011 Interaction of mitoxantrone, as an anticancer drug, with chromatin proteins, core histones and H1, in solution. Int. J. Biol. Macromol. 48 87–92

    Article  PubMed  CAS  Google Scholar 

  • Hajihassan Z and Rabbani-Chadegani A 2009 Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins. J. Biomed. Sci. 16 31

    Google Scholar 

  • Haq I 2002 Thermodynamics of drug-DNA interactions. Arch. Biochem. Biophys. 403 1–15

    Article  PubMed  CAS  Google Scholar 

  • Hurley LH 2002 DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2 188–200

    Google Scholar 

  • Kopka ML, Yoon C, Goodsell D, Pjura P and Dickerson RE 1985 The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl. Acad. Sci. USA 82 1376–1380

    Google Scholar 

  • Kornberg RD 1977 Structure of chromatin. Annu. Rev. Biochem. 46 931–954

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Takao T, Devi PG, Ghosh S, Ghosh A, Dasgupta A and Dasgupta D 2011 Association of aureolic acid antibiotic, chromomycin A3 with Cu(2+) and its negative effect upon DNA binding property of the antibiotic. Biometals 25 435–450

    Article  PubMed  Google Scholar 

  • Lohse J, Dahl O and Nielsen PE 1999 Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc. Natl. Acad. Sci. USA 96 11804–11808

    Google Scholar 

  • Low CM, Drew HR and Waring MJ 1986 Echinomycin and distamycin induce rotation of nucleosome core DNA. Nucleic Acids Res. 14 6785–6801

    Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ 1997 Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389 251–260

    Article  PubMed  CAS  Google Scholar 

  • Majumder P and Dasgupta D 2011 Effect of DNA Groove Binder Distamycin A upon chromatin structure. PLoS One 6 e26486

    Google Scholar 

  • Majumder P, Pradhan SK, Devi PG, Pal S and Dasgupta D 2007 Chromatin as a target for the DNA-binding anticancer drugs. Subcell Biochem. 41 145–189

    Google Scholar 

  • Mcghee JD and Felsenfeld G 1980 Nucleosome structure. Annu. Rev. Biochem. 49 1115–1156

    Article  PubMed  CAS  Google Scholar 

  • Mcmurray CT and Van Holde KE 1986 Binding of ethidium bromide causes dissociation of the nucleosome core particle. Proc. Natl. Acad. Sci. USA 83 8472–8476

    Google Scholar 

  • Mir MA, Das S and Dasgupta D 2004 N-terminal tail domains of core histones in nucleosome block the access of anticancer drugs, mithramycin and daunomycin, to the nucleosomal DNA. Biophys. Chem. 109 121–135

    Article  PubMed  CAS  Google Scholar 

  • Mir MA and Dasgupta D 2003 Association of anticancer drug mithramycin with H1-depleted chromatin: a comparison with native chromatin. J. Inorg. Biochem. 94 72–77

    Article  PubMed  CAS  Google Scholar 

  • Mir MA, Majee S, Das S and Dasgupta D 2003 Association of chromatin with anticancer antibiotics, mithramycin and chromomycin A3. Bioorg. Med. Chem. 11 2791–2801

    Article  PubMed  CAS  Google Scholar 

  • Nelson SM, Ferguson LR and Denny WA 2007 Non-covalent ligand/DNA interactions: minor groove binding agents. Mutat. Res. 623 24–40

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PE 1999 Peptide nucleic acids as therapeutic agents. Curr. Opin. Struct. Biol. 9 353–357

    Article  PubMed  CAS  Google Scholar 

  • Palchaudhuri R and Hergenrother PJ 2007 DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 18 497–503

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi SK and Desiraju GR 2007 Strong and weak hydrogen bonds in drug-DNA complexes: a statistical analysis. J. Biosci. 32 677–691

    Article  PubMed  CAS  Google Scholar 

  • Rabbani A, Finn RM, Thambirajah AA and Ausio J 2004 Binding of antitumor antibiotic daunomycin to histones in chromatin and in solution. Biochemistry 43 16497–16504

    Article  PubMed  CAS  Google Scholar 

  • Rabbani A, Iskandar M and Ausio J 1999 Daunomycin-induced unfolding and aggregation of chromatin. J. Biol. Chem. 274 18401–18406

    Article  PubMed  CAS  Google Scholar 

  • Rentzeperis D, Marky LA, Dwyer TJ, Geierstanger BH, Pelton JG and Wemmer DE 1995 Interaction of minor groove ligands to an AAATT/AATTT site: correlation of thermodynamic characterization and solution structure. Biochemistry 34 2937–2945

    Article  PubMed  CAS  Google Scholar 

  • Saenger W 1984 Principles of nucleic acid structure (New York: Springer-Verlag)

    Book  Google Scholar 

  • Selvi BR, Pradhan SK, Shandilya J, Das C, Sailaja BS, Shankar GN, Gadad SS, Reddy A, Dasgupta D and Kundu TK 2009 Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. Chem. Biol. 16 203–216

    Article  Google Scholar 

  • Singh B and Gupta RS 1983 Mutagenic responses of thirteen anticancer drugs on mutation induction at multiple genetic loci and on sister chromatid exchanges in Chinese hamster ovary cells. Cancer Res. 43 577–584

    Google Scholar 

  • Spolar RS and Record MT Jr 1994 Coupling of local folding to site-specific binding of proteins to DNA. Science 263 777–784

    Article  PubMed  CAS  Google Scholar 

  • Taquet A, Labarbe R and Houssier C 1998 Calorimetric investigation of ethidium and netropsin binding to chicken erythrocyte chromatin. Biochemistry 37 9119–9126

    Article  PubMed  CAS  Google Scholar 

  • Thuong NT and Helene C 1993 Sequence specific recognition and modification of double helical DNA by oligonucleotides. Angewandte Chemie Int. Ed. English 32 666–690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Dasgupta.

Additional information

[Dasgupta D, Majumder P and Banerjee A 2012 A revisit of the mode of interaction of small transcription inhibitors with genomic DNA. J Biosci. 37 1–7] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, D., Majumder, P. & Banerjee, A. A revisit of the mode of interaction of small transcription inhibitors with genomic DNA. J Biosci 37, 475–481 (2012). https://doi.org/10.1007/s12038-012-9211-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9211-9

Keywords

Navigation