Skip to main content

Advertisement

Log in

The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck C W and Slack J M W 1998 Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth; Mech. Dev. 72 41–52

    CAS  PubMed  Google Scholar 

  • Beck C W and Slack J M W 1999 A developmental pathway controlling outgrowth of the Xenopus tail bud; Development 126 1611–1620

    CAS  PubMed  Google Scholar 

  • de Beer G R 1947 The differentiation of neural crest cells into visceral cartilages and odontoblasts in Amblystoma, and a reexamination of the germ-layer theory; Proc. R. Soc. London B134 377–398

    Google Scholar 

  • de Beer G R 1971 Homology: An unsolved problem, Oxford Biology Reader No. 11 (London: Oxford University Press)

    Google Scholar 

  • Billon N, Iannarelli P, Monteiro M C, Glavieux-Pardanaud C, et al 2007 The generation of adipocytes by the neural crest; Development 134 2283–2292

    CAS  PubMed  Google Scholar 

  • Bolande R P 1974 The neurocristopathies: A unifying concept of disease arising in neural crest maldevelopment Human Pathol. 5 409–429

    Google Scholar 

  • Bolande R P 1981 Neurofibromatosis:-the quintessential neurocristopathy: Pathogenetic concepts and relationships; Adv. Neurol. 29 67–75

    CAS  PubMed  Google Scholar 

  • Carroll S B, Grenier J K and Weatherbee S D 2005 From DNA to Diversity. Molecular genetics and the Evolution of Animal Design. Second Edition. Blackwell Publishing, Malden, MA.

    Google Scholar 

  • Carstens M H 2004 Neural tube programming and craniofacial cleft formation. I. The neuromeric organization of the head and neck; Eur. J. Pediatr. Neurol. 8 181–210

    Google Scholar 

  • Ebendal T 1995 Cell movement in neurogenesis — An interview with Professor Jacobson, Carl Olaf; Int. J. Dev. Biol. 39 705–711

    Google Scholar 

  • Eberhart J K, He X, Swartz M E, Yan Y-L, et al 2008 MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis Nat. Genet. 40 290–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhart J K, Swartz M E, Crump G and Kimmel C B 2006 Early hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development; Development 133 1069–1077

    CAS  PubMed  Google Scholar 

  • Gans C and Northcutt R G 1983 Neural crest and the origin of vertebrates: a new head; Science 220 268–274

    CAS  PubMed  Google Scholar 

  • Griffith C M, Wiley M J and Sanders E J 1992 The vertebrate tail bud: Three germ layers from one tissue; Anat. Embryol. 185 101–113

    CAS  Google Scholar 

  • Grüneberg H 1956 A ventral ectodermal ridge of the tail in mouse embryos Nature (London) 177 787–788

    Google Scholar 

  • Gurdon J B 1992 The generation of diversity and pattern in animal development; Cell 68 185–199

    CAS  PubMed  Google Scholar 

  • Halder G, Callaerts P and Gehring W J 1995. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila; Science 267 1788–1792

    CAS  PubMed  Google Scholar 

  • Hall B K (ed.) 1994 Homology: The hierarchical basis of comparative biology (Boca Raton: Academic Press)

    Google Scholar 

  • Hall B K 1995 Homology and embryonic development; Evol. Biol. 28 1–37

    CAS  Google Scholar 

  • Hall B K 1998 Germ layers and the germ-layer theory revisited: Primary and secondary germ layers, neural crest as a fourth germ layer, homology, demise of the germ-layer theory; Evol. Biol. 30 121–186

    Google Scholar 

  • Hall B K 1999a The neural crest in development and evolution (New York: Springer)

    Google Scholar 

  • Hall B K 1999b Evolutionary developmental biology 2nd edition (Dordrecht, Netherlands: Kluwer Academic Publishers)

    Google Scholar 

  • Hall B K 2000a A role for epithelial-mesenchymal interactions in tail growth/morphogenesis and chondrogenesis in embryonic mice; Cell Tissues Organs 166 6–14

    CAS  Google Scholar 

  • Hall B K 2000b The evolution of the neural crest in vertebrates; in Regulatory processes in development: The legacy of sven Hörstadius Wenner-Gren International Series Volume 76 (eds) C-O Jacobson, L Olsson and T Laurent (London: The Portland Press) pp 101–113

    Google Scholar 

  • Hall B K 2000c Epithelial-mesenchymal interactions; in Methods in molecular biology, Vol. 125: Developmental biology protocols, Vol. 3 (eds) R S Tuan and C W Lo) (Totowa, NJ: Humana Press Inc.) pp 235–243

    Google Scholar 

  • Hall B K 2000d The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic; Evol. Dev. 2 1–3

    Google Scholar 

  • Hall B K 2003a Unlocking the Black Box between Genotype and Phenotype: Cell Condensations as Morphogenetic (modular) Units; Biol. Philos. 18 219–247

    Google Scholar 

  • Hall B K 2005b Bone and cartilage: Developmental and evolutionary skeletal biology (London: Elsevier Academic Press)

    Google Scholar 

  • Hall B K 2007 Homology and homoplasy; in Handbook of the philosophy of science. Philosophy of biology (eds) M Matthen and C Stephens (Elsevier B V) pp 429–453

    Google Scholar 

  • Hall B K 2008a The neural crest and neural crest cells in vertebrate development and evolution (New York: Springer) (in press)

    Google Scholar 

  • Hall B K 2008b Evolutionary origins of the neural crest and neural crest cells; Evol. Biol. (in press)

  • Hall B K and Hallgrímsson B (ed.) 2008 Strickberger’s evolution. The integration of genes, organisms, and populations 4th edition (Sudbury, MA: Jones and Bartlett, Publishers)

    Google Scholar 

  • Handrigan G R 2003 Concordia discors: duality in the origin of the vertebrate tail; J. Anat. 202 255–267

    PubMed  PubMed Central  Google Scholar 

  • Heimberg A M, Sempere L F, Moy V N, Donoghue P C J and Peterson K J 2008 MicroRNAs and the advent of vertebrate morphological complexity; Proc. Natl. Acad. Sci. USA 105 2946–2950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holland P W H and Graham A 1995 Evolution of regional identity in the vertebrate nervous system; Persp. Dev. Neurobiol. 3 17–27

    CAS  Google Scholar 

  • Holmdahl D E 1928 Die Enstehung und weitere Entwicklung der Neuralleiste (Ganglienleiste) bei Vogeln und Saugetieren; Z. Mikrosk-Anat. Forsch. 14 99–298

    Google Scholar 

  • Hörstadius S 1950 The neural vrest: Its properties and derivatives in the light of experimental research (Oxford: Oxford University Press)

  • Hörstadius S and Sellman S 1941 Experimental studies on the determination of the chondrocranium in Amblystoma mexicanum; Ark. Zool. 33A 1–8

    Google Scholar 

  • Hörstadius S and Sellman S 1946 Experimentelle untersuchungen über die Determination des Knorpeligen Kopfskelettes bei Urodelen; Nova Acta R. Soc. Scient. Upsal. Ser. 4, 13 1–170

    Google Scholar 

  • Jacobson C-O 2000 Sven Hörstadius, the man and his work; in Regulatory processes in development (eds) L Olsson and C-O Jacobson (London: Portland Press) pp 1–10

    Google Scholar 

  • Janvier P 2007 Homologies and evolutionary transitions in early vertebrate history; in Major transitions in vertebrate evolution (eds) J S Anderson and H-D Sues (Bloomington and Indianapolis: Indiana University Press) pp 57–121

    Google Scholar 

  • Johnson D R 1986 The genetics of the skeleton. Animal models of skeletal development (Oxford: The Clarendon Press)

    Google Scholar 

  • Johnston M C 1966 A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo; Anat. Rec. 156 143–156

    CAS  PubMed  Google Scholar 

  • Kang P and Svoboda K K H 2005 Epithelial-mesenchymal transformation during craniofacial development; J. Dental Res. 84 678–690

    CAS  Google Scholar 

  • Kerr J G 1919. Text-book of embryology, Volume II. Vertebrata with the exception of mammalia (London: Macmillan)

  • Landacre F L 1921 The fate of the neural crest in the head of the Urodeles J. Comp. Neurol. 33 1–43

    Google Scholar 

  • Lankester E R 1873 On the primitive cell-layers of the embryo as the basis of genealogical classification of animals, and on the origin of vascular and lymph systems; Ann. Mag. Nat. Hist. Series 4 11 321–338

    Google Scholar 

  • Lankester E R 1877 Notes on the embryology and classification of the animal kingdom: Comprising a revision of speculations relative to the origin and significance of the germ layers; Quart. J. Microsc. Sci. 17 399–454

    Google Scholar 

  • Le Douarin N M 1974 Cell recognition based on natural morphological nuclear markers; Med. Biol. 52 281–319

    PubMed  Google Scholar 

  • Le Douarin N M 1982 The neural crest (Cambridge: Cambridge University Press)

    Google Scholar 

  • Le Douarin N M 1986 Cell line segregation during peripheral nervous system ontogeny; Science 231 1515–1522

    PubMed  Google Scholar 

  • Le Douarin N M, Dupin E, Baroffio A and Dulac C 1992 New insights into the development of neural crest derivatives; Int. Rev. Cytol. 138 269–314

    PubMed  Google Scholar 

  • Le Douarin N M, Grapin-Botton A and Catala M 1996 Patterning of the neural primordium in the avian embryo; Sem. Cell Dev. Biol. 1 157–167

    Google Scholar 

  • Le Douarin N M and Kalcheim C 1999 The neural crest 2nd edition (Cambridge: Cambridge University Press)

    Google Scholar 

  • Maderson P F A (ed.) 1987 Developmental and evolutionary aspects of the neural crest (New York: John Wiley)

    Google Scholar 

  • Martindale M Q, Pang K and Finnerty J R 2004 Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa); Development 131 2463–2474

    CAS  PubMed  Google Scholar 

  • Miller C T, Beleza S, Pollen. A, Schluter D, et al 2007 cisregulatory changes in Kit Ligand expression and parallel evolution of pigmentation in sticklebacks and humans; Cell 131 1179–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty-Hejmadi P, Dutta S K and Mahapatra P 1992 Limbs generated at site of tail amputation in marbled balloon frog after vitamin A treatment; Nature (London) 355 352–353

    CAS  Google Scholar 

  • Morales A V, Barbas J A and Nieto M A 2005 How to become neural crest: From segregation to delamination; Sem. Cell Dev. Biol. 16 655–662

    CAS  Google Scholar 

  • Müller F and O’Rahilly R 2004 The primitive streak, the caudal eminence and related structures in staged human embryos; Cells Tissues Organs 177 2–20

    PubMed  Google Scholar 

  • Newgreen D F (ed.) 1995 Epithelial-Mesenchymal transitions, Part I; Acta Anat. 154 1–97

    Google Scholar 

  • Olsson L 2000 The scientific publications of Sven Hörstadius — a bibliography; in Regulatory processes in development (ed.) L Olsson and C-O Jacobson (London: Portland Press) pp 11–18

    Google Scholar 

  • Opitz J M and Clark E B 2000 Heart development: an introduction; Am. J. Med. Gen. 97 238–247

    CAS  Google Scholar 

  • Oppenheimer J M 1940 The non-specificity of the germ layers; Q. Rev. Biol. 15 1–27

    Google Scholar 

  • O’Rahilly R and Müller F 2006 The embryonic human brain: An Atlas of developmental stages 3rd edition (New York: Wiley-Liss)

    Google Scholar 

  • O’Rahilly R and Müller F 2007 The development of the neural crest in the human; J. Anat. 211 335–351

    PubMed  PubMed Central  Google Scholar 

  • Peterson K J and Davidson E H 2000 Regulatory evolution and the origin of the bilaterians; Proc. Natl. Acad. Sci. USA 97 4430–4433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson P E, Blankenship T H, Wilson D B and Hendrickx A G 1996 Analysis of hindbrain neural crest migration in the long-tailed monkey (Macaca fascicularis); Anat. Embryol. 194 235–246

    CAS  Google Scholar 

  • Platt J B 1893 Ectodermic origin of the cartilages of the head; Anat. Anz. 8 506–509

    Google Scholar 

  • Platt J B 1894 Ontogenetic differentiation of the ectoderm in Necturus. Second preliminary note; Arch. Mikrosk. Anat. EntwMech. 43 911–966

    Google Scholar 

  • Platt J B 1897 The development of the cartilaginous skull and of the branchial and hypoglossal musculature in Necturus; Morphol. Jb. 25 377–464

    Google Scholar 

  • Putnam N H, Srivastava M, Hellsten U, Dirks B, et al 2007 Sea anemone genome reveals ancestral eumetazoan gene repertoires and genomic organization; Science 317 86–95

    CAS  PubMed  Google Scholar 

  • Raven C P 1931 Zur Entwicklung der Ganglienleiste. I. Die Kinematik der Ganglienleisten Entwicklung bei den Urodelen; Wilhelm Roux Arch. EntwMech Org. 125 210–293

    Google Scholar 

  • Raven C P 1936 Zur Entwicklung der Ganglienleiste. V. über die Differenzierung des Rumpfganglienleistenmaterials; Wilhelm Roux Arch. EntwMech Org. 134 122–145

    CAS  Google Scholar 

  • Remak R 1850–1855 Untersuchungen über die Entwickelung der Wirbelthiere (Berlin: G Reimer)

    Google Scholar 

  • Sasai Y and de Robertis E M 1997 Ectodermal patterning in vertebrate embryos; Dev. Biol. 182 5–20

    CAS  PubMed  Google Scholar 

  • Savagner P 2001 Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition; BioEssays 23 912–923

    CAS  PubMed  Google Scholar 

  • Schaeffer B 1977 The dermal skeleton in fishes; in Problems in vertebrate evolution (eds) S M Andrews, R S Miles and A D Walker Linn. Soc. Symp. 4 25–52

  • Schoenwolf G C, Chandler N B and Smith J L 1985 Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos; Dev. Biol. 110 467–479

    CAS  PubMed  Google Scholar 

  • Schoenwolf G C and Nichols D H 1984 Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos; J. Comp. Neurol. 222 496–505

    CAS  PubMed  Google Scholar 

  • Shimeld S M, and Holland P W H 2000 Vertebrate innovations; Proc. Natl. Acad. Sci. USA 97 4449–4452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stone J R, and Hall B K 2004 Latent homologues for the neural crest as an evolutionary novelty. Evol. Dev. 6 123–129

    PubMed  Google Scholar 

  • Stone L S 1926 Further experiments on the extirpation and transplantation of mesectoderm in Amblystoma punctatum; J. Exp. Zool. 44 95–131

    Google Scholar 

  • Stone L S 1929 Experiments showing the role of migrating neural crest (mesectoderm) in the formation of head skeleton and loose connective tissue in Rana palustris; Wilhelm Roux Arch. EntwMech Org. 118 40–77

    CAS  Google Scholar 

  • Takashima Y, Era T, Nakao K, Kondo S, et al 2007 Neuroepithelial cells supply an initial transient wave of MSC differentiation; Cell 129 1377–1388

    CAS  PubMed  Google Scholar 

  • Vickaryous M K and Hall B K 2006 Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest Biol. Rev. Camb. Philos. Soc. 81 425–455

    PubMed  Google Scholar 

  • Weston J A 1963 A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick; Dev. Biol. 6 279–310

    CAS  PubMed  Google Scholar 

  • Weston J A 1970 The migration and differentiation of neural crest cells; Adv. Morphog. 8 41–114

    CAS  PubMed  Google Scholar 

  • Weston J A, Yoshida H, Robinson V B, Nishikawa S et al 2004 Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis; Dec. Dyn. 229 118–130

    Google Scholar 

  • Wilson D B and Wyatt D P 1988 Closure of the posterior neuropore in the vL mutant mouse. Anat Embryol. 178 559–563

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B.K. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization. J. Biosci. 33, 781–793 (2008). https://doi.org/10.1007/s12038-008-0098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-008-0098-4

Keywords

Navigation