Skip to main content
Log in

Based on Virtual Screening and Simulation Exploring the Mechanism of Plant-Derived Compounds with PINK1 to Postherpetic Neuralgia

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating evidence strongly supports that PINK1 mutation can mediate mitochondrial autophagy dysfunction in dopaminergic neurons. This study was conducted to determine the role of PINK1 in the pathogenesis of postherpetic neuralgia (PHN) and find new targets for its treatment. A rigorous literature review was conducted to identify 2801 compounds from more than 200 plants in Asia. Virtual screening was used to shortlist the compounds into 20 groups based on their binding energies. MM/PBSA was used to further screen the compound dataset, and vitexin, luteoloside, and 2′-deoxyadenosine-5′-monophosphate were found to have a score of − 59.439, − 52.421, and − 47.544 kcal/mol, respectively. Pain behavioral quantification, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blotting, and transmission electron microscopy were used to confirm the effective mechanism. Vitexin had the most significant therapeutic effect on rats with PHN followed by luteoloside; 2′-deoxyadenosine-5′-monophosphate had no significant effect. Our findings suggested that vitexin could alleviate PHN by regulating mitochondrial autophagy through PINK1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

References

  1. Langan SM, Smeeth L, Margolis DJ, Thomas SL (2013) Herpes zoster vaccine effectiveness against incident herpes zoster and post-herpetic neuralgia in an older US population: a cohort study. PLoS Med 10(4):e1001420. https://doi.org/10.1371/journal.pmed.1001420

    Article  PubMed  PubMed Central  Google Scholar 

  2. Curran D, Schmidt-Ott R, Schutter U, Simon J, Anastassopoulou A, Matthews S (2018) Impact of herpes zoster and postherpetic neuralgia on the quality of life of Germans aged 50 or above. BMC Infect Dis 18(1):496. https://doi.org/10.1186/s12879-018-3395-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J, Vesikari T, Watanabe D, Weckx L, Zahaf T, Heineman TC (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372(22):2087–2096. https://doi.org/10.1056/NEJMoa1501184

    Article  PubMed  Google Scholar 

  4. Mizukami A, Sato K, Adachi K, Matthews S, Holl K, Matsuki T, Kaise T, Curran D (2018) Impact of Herpes zoster and post-herpetic neuralgia on health-related quality of life in Japanese adults aged 60 years or older: results from a prospective, observational cohort study. Clin Drug Investig 38(1):29–37. https://doi.org/10.1007/s40261-017-0581-5

    Article  PubMed  Google Scholar 

  5. Liang X, Fan Y (2023) Bidirectional two-sample Mendelian randomization analysis reveals a causal effect of interleukin-18 levels on postherpetic neuralgia risk. Front Immunol 14:1183378. https://doi.org/10.3389/fimmu.2023.1183378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonaldo R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in <i>PINK1</i>. Science 304(5674):1158–1160. https://doi.org/10.1126/science.1096284

    Article  CAS  PubMed  Google Scholar 

  7. Gandhi S, Muqit MMK, Stanyer L, Healy DG, Abou-Sleiman PM, Hargreaves I, Heales S, Ganguly M, Parsons L, Lees AJ, Latchman DS, Holton JL, Wood NW, Revesz T (2006) PINK1 protein in normal human brain and Parkinson’s disease. Brain 129:1720–1731. https://doi.org/10.1093/brain/awl114

    Article  CAS  PubMed  Google Scholar 

  8. Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M (2020) Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 284:197989. https://doi.org/10.1016/j.virusres.2020.197989

    Article  CAS  PubMed  Google Scholar 

  9. Ganjhu RK, Mudgal PP, Maity H, Dowarha D, Devadiga S, Nag S, Arunkumar G (2015) Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease 26(4):225–236. https://doi.org/10.1007/s13337-015-0276-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

    Article  CAS  PubMed  Google Scholar 

  11. Mahmud S, Parves MR, Riza YM, Sujon KM, Ray S, Tithi FA, Zaoti ZF, Alam S, Absar N (2020) Exploring the potent inhibitors and binding modes of phospholipase A2 through in silico investigation. J Biomol Struct Dyn 38(14):4221–4231. https://doi.org/10.1080/07391102.2019.1680440

    Article  CAS  PubMed  Google Scholar 

  12. Macalino SJ, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharm Res 38(9):1686–1701. https://doi.org/10.1007/s12272-015-0640-5

    Article  CAS  PubMed  Google Scholar 

  13. Altenhöfer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23(5):406–427. https://doi.org/10.1089/ars.2013.5814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahmud S, Uddin MAR, Paul GK, Shimu MSS, Islam S, Rahman E, Islam A, Islam MS, Promi MM, Emran TB, Saleh MA (2021) Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Brief Bioinform 22(2):1402–1414. https://doi.org/10.1093/bib/bbaa428

    Article  CAS  PubMed  Google Scholar 

  15. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H (2020) Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. https://doi.org/10.1038/s41586-020-2223-y

    Article  CAS  PubMed  Google Scholar 

  16. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  18. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, Dahlgren MK, Mondal S, Chen W, Wang L, Abel R, Friesner RA, Harder ED (2019) OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput 15(3):1863–1874. https://doi.org/10.1021/acs.jctc.8b01026

    Article  CAS  PubMed  Google Scholar 

  19. Ojo OA, Aruleba RT, Adekiya TA, Sibuyi NRS, Ojo AB, Ajiboye BO, Oyinloye BE, Adeola HA, Fadaka AO (2022) Deciphering the interaction of puerarin with cancer macromolecules: an in silico investigation. J Biomol Struct Dyn 40(2):848–859. https://doi.org/10.1080/07391102.2020.1819425

    Article  CAS  PubMed  Google Scholar 

  20. Dinata R, Nisa N, Arati C, Rasmita B, Uditraj C, Siddhartha R, Bhanushree B, Saeed-Ahmed L, Manikandan B, Bidanchi RM, Abinash G, Pori B, Khushboo M, Roy VK, Gurusubramanian G (2023) Repurposing immune boosting and anti-viral efficacy of Parkia bioactive entities as multi-target directed therapeutic approach for SARS-CoV-2: exploration of lead drugs by drug likeness, molecular docking and molecular dynamics simulation methods. J Biomol Struct Dyn:1–39. https://doi.org/10.1080/07391102.2023.2192797

  21. Zhao S, Zhang X, Ferreira da Silva-Júnior E, Zhan P, Liu X (2023) Computer-aided drug design in seeking viral capsid modulators. Drug discovery today:103581. https://doi.org/10.1016/j.drudis.2023.103581

  22. Luque-Navarro PM, Carrasco-Jiménez MP, Goracci L, Paredes JM, Espinar-Barranco L, Valverde-Pozo J, Torretta A, Parisini E, Mariotto E, Marchioro C, Laso A, Marco C, Viola G, Lanari D, López Cara LC (2023) New bioisosteric sulphur-containing choline kinase inhibitors with a tracked mode of action. Eur J Med Chem 246:115003. https://doi.org/10.1016/j.ejmech.2022.115003

    Article  CAS  PubMed  Google Scholar 

  23. Sirous H, Campiani G, Calderone V, Brogi S (2021) Discovery of novel hit compounds as potential HDAC1 inhibitors: the case of ligand- and structure-based virtual screening. Comput Biol Med 137:104808. https://doi.org/10.1016/j.compbiomed.2021.104808

    Article  CAS  PubMed  Google Scholar 

  24. Imran A, Shehzad MT, Shah SJA, Laws M, Al-Adhami T, Rahman KM, Khan IA, Shafiq Z, Iqbal J (2022) Development, molecular docking, and in silico ADME evaluation of selective ALR2 inhibitors for the treatment of diabetic complications via suppression of the polyol pathway. ACS Omega 7(30):26425–26436. https://doi.org/10.1021/acsomega.2c02326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pasupa K, Kudisthalert W (2018) Virtual screening by a new clustering-based weighted similarity extreme learning machine approach. PLoS ONE 13(4):e0195478. https://doi.org/10.1371/journal.pone.0195478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yadav R, Hasan S, Mahato S, Celik I, Mary YS, Kumar A, Dhamija P, Sharma A, Choudhary N, Chaudhary PK, Kushwah AS, Chaudhary JK (2021) Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2. J Mol Liq 342:116942. https://doi.org/10.1016/j.molliq.2021.116942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hao Dong T, Yau Wen Ning A, Yin Quan T (2023) Network pharmacology-integrated molecular docking analysis of phytocompounds of Caesalpinia pulcherrima (peacock flower) as potential anti-metastatic agents. J Biomol Struct Dyn:1–17. https://doi.org/10.1080/07391102.2023.2202273

  28. Ye DW, Bu HL, Guo GH, Shu B, Wang W, Guan XH, Yang H, Tian XB, Xiang HB, Gao F (2014) Activation of CXCL10/CXCR3 signaling attenuates morphine analgesia: involvement of Gi protein. J Mol Neurosci 53(4):571–579. https://doi.org/10.1007/s12031-013-0223-1

    Article  CAS  PubMed  Google Scholar 

  29. Niu X, Shi Y, Li Q, Chen H, Fan X, Yu Y, Lv C, Lu J (2023) Ginsenoside Rb(1) for overcoming cisplatin-insensitivity of A549/DDP cells in vitro and vivo through the dual-inhibition on two efflux pumps of ABCB1 and PTCH1. Phytomedicine 115:154776. https://doi.org/10.1016/j.phymed.2023.154776

    Article  CAS  PubMed  Google Scholar 

  30. Feng M, Liu L, Wang J, Zhang J, Qu Z, Wang Y, He B (2023) The molecular mechanisms study of engeletin suppresses RANKL-induced osteoclastogenesis and inhibits ovariectomized murine model bone loss. J Inflamm Res 16:2255–2270. https://doi.org/10.2147/jir.S401519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu J, Xie M, Duan X, Liu F, Luo P, Liu Q (2023) Upregulation of the Four and a Half LIM Domains 1 linked with familial venous dysplasia in a familial genetic examination. Am J Transl Res 15(8):5035–5046

    PubMed  PubMed Central  Google Scholar 

  32. Smith NJ, Doody NE, Štěpánková K, Fuller M, Ichiyama RM, Kwok JCF, Egginton S (2023) Spatiotemporal microvascular changes following contusive spinal cord injury. Front Neuroanat 17:1152131. https://doi.org/10.3389/fnana.2023.1152131

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu Y, Zhou L, Zhu X, Dai D, Bao Y, Qiu Y (2019) Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. J Biomol Struct Dyn 37(10):2703–2715. https://doi.org/10.1080/07391102.2018.1495576

    Article  CAS  PubMed  Google Scholar 

  34. Lin CS, Lin YC, Lao HC, Chen CC (2019) Interventional treatments for postherpetic neuralgia: a systematic review. Pain Physician 22(3):209–228

    Article  PubMed  Google Scholar 

  35. Markman JD, Kress BT, Frazer M, Hanson R, Kogan V, Huang JH (2015) Screening for neuropathic characteristics in failed back surgery syndromes: challenges for guiding treatment. Pain medicine (Malden, Mass) 16(3):520–530. https://doi.org/10.1111/pme.12612

    Article  PubMed  Google Scholar 

  36. Beuming T, Lenselink B, Pala D, McRobb F, Repasky M, Sherman W (2015) Docking and virtual screening strategies for GPCR drug discovery. Methods in molecular biology (Clifton, NJ) 1335:251–276. https://doi.org/10.1007/978-1-4939-2914-6_17

    Article  Google Scholar 

  37. Kanhed AM, Patel DV, Teli DM, Patel NR, Chhabria MT, Yadav MR (2021) Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach. Mol Diversity 25(1):383–401. https://doi.org/10.1007/s11030-020-10130-1

    Article  CAS  Google Scholar 

  38. Pérez-Regidor L, Zarioh M, Ortega L, Martín-Santamaría S (2016) Virtual screening approaches towards the discovery of toll-like receptor modulators. International journal of molecular sciences 17 (9). https://doi.org/10.3390/ijms17091508

  39. Kimura I, Kagawa S, Tsuneki H, Tanaka K, Nagashima F (2022) Multitasking bamboo leaf-derived compounds in prevention of infectious, inflammatory, atherosclerotic, metabolic, and neuropsychiatric diseases. Pharmacol Ther 235:108159. https://doi.org/10.1016/j.pharmthera.2022.108159

    Article  CAS  PubMed  Google Scholar 

  40. de AraújoEsteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM (2021) Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 12(22):11106–11120

    Article  Google Scholar 

  41. Yang QR, Zhao YY, Hao JB, Li WD (2016) [Research progress on chemical constituents and their differences between Lonicerae Japonicae Flos and Lonicerae Flos]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica 41 (7):1204–1211 https://doi.org/10.4268/cjcmm20160708

  42. Krzeminski J, Desai D, Lin JM, Serebryany V, El-Bayoumy K, Amin S (2000) Synthesis of anti-1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-6-nitrochrysene and its reaction with 2’-deoxyguanosine- 5’-monophosphate, 2’-deoxyadenosine-5’-monophosphate, and calf thymus DNA in vitro. Chem Res Toxicol 13(11):1143–1148. https://doi.org/10.1021/tx000104n

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by grants from Shanghai Municipal Commission of Health and Family Planning, NO. ZY (2021–2023)-0208, support project of the Shanghai Science and Technology Commission (14401901400), and the Science and Technology Commission of Shanghai Municipality (Grant No. 23S21900300).

Author information

Authors and Affiliations

Authors

Contributions

Wenjing Guo: conceptualization, methodology, data curation, writing—original draft; Bo Zhang: visualization, investigation; Minchen Liu: visualization, investigation; Jiquan Zhang: visualization, investigation; Yi Feng: data curation, writing—review and editing.

Corresponding authors

Correspondence to Jiquan Zhang or Yi Feng.

Ethics declarations

Ethics Approval

The Institutional Animal Care and Use Committee (IACUC) of Shanghai University of Traditional Chinese Medicine approval the protocols of all experiments involving animals (approval number: PZSHUTCM2212080002).

Consent to Participate

We confirm that the manuscript has been read and approved by all named authors and there are no other persons who satisfied the criteria for authorship but are not listed.

Consent for Publication

We the undersigned declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Zhang, B., Liu, M. et al. Based on Virtual Screening and Simulation Exploring the Mechanism of Plant-Derived Compounds with PINK1 to Postherpetic Neuralgia. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04098-4

Keywords

Navigation