Skip to main content

Advertisement

Log in

Mitochondria-Endoplasmic Reticulum Contact Sites (MERCS): A New Axis in Neuronal Degeneration and Regeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondria-Endoplasmic Reticulum Contact Sites (MERCS) are dynamic structures whose physiological interaction is vital to direct life and death of the cell. A bevy of tethering proteins, mitofusin-1/2 (Mfn-1/2), glucose-regulated protein-75 (Grp-75), voltage-dependent anion channel-1 (VDAC1), and dynamic-related protein-1 (Drp1), plays an integral role in establishing and regulating this intricate intracellular communication. Dysregulation of this interplay leads to various neurodegenerative disorders, like Alzheimer’s disease (AD), Parkinson’s disease (PD), stroke, traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Although there is an absence of a well-defined molecular background that dictates the pathway of MERCS, adequate exploration has resulted in preliminary data that suggests its cardinal role in neuroregeneration. The juxtaposition of mitochondria and ER has a critical function in cell senescence, thus regulating regeneration. Axonal regeneration and brain tissue regeneration, using reactive astrocytes, are studied most extensively. Overexpression of Grp-75 promoted axonal regeneration post a nerve injury. Attempts have been made to exploit MERCS as potential therapeutic drug targets for enhancing neuroregeneration and impeding neurodegeneration. Novel strategies have been developed to aid the delivery of mitochondria into the neuronal cell body, which in turn establishes a network with the presiding ER resulting in contact site formation. The fascinating aspect of this mechanism is that despite the lack of inherent regenerative capacity in neurons, it can be induced by modifying MERCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Shirokova OM, Pchelin PV, Mukhina IV (2020) MERCs. The novel assistant to neurotransmission? Front Neurosci. 14:1–14

    Article  Google Scholar 

  2. Giacomello M, Pellegrini L (2016) The coming of age of the mitochondria-ER contact: a matter of thickness. Cell Death Differ [Internet] 23(9):1417–27. https://doi.org/10.1038/cdd.2016.52. (Available from)

    Article  CAS  PubMed  Google Scholar 

  3. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–62

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu Y, Whiteus C, Xu CS, Hayworth KJ, Weinberg RJ, Hess HF et al (2017) Contacts between the endoplasmic reticulum and other membranes in neurons. Proc Natl Acad Sci U S A 114(24):E4859–E4867

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kornmann B (2020) The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes. Biol Chem 401(6–7):811–820

    Article  CAS  PubMed  Google Scholar 

  6. Rowland AA, Voeltz GK (2012) Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13(10):607–625

  7. Wang X, Schwarz TL, Kirby FM (2009) The mechanism of kinesin regulation by Ca ++ for control of mitochondrial motility. Cell 136(1):163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fernandes T, Domingues MR, Moreira PI, Pereira CF (2023) A perspective on the link between mitochondria-associated membranes (MAMs) and lipid droplets metabolism in neurodegenerative diseases. Biology (Basel) 12:3

    Google Scholar 

  10. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–6

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider TG et al (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson Å, Aspenstrom P et al (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A 105(52):20728–20733

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frederick RL, McCaffery JM, Cunningham KW, Okamoto K, Shaw JM (2004) Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J Cell Biol 167(1):87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kornmann B, Osman C, Walter P (2011) The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci U S A 108(34):14151–14156

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS et al (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477–81

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in drosophila motor axons. Mol Biol Cell 17:2057–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panda S, Behera S, Alam MF, Syed GH (2021) Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 58:227–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adachi Y, Kato T, Yamada T, Murata D, Arai K, Stahelin RV et al (2020) Drp1 tubulates the ER in a GTPase independent manner. Mol Cell 80(4):621–632

  19. Tábara LC, Morris JL, Prudent J (2021) The complex dance of organelles during mitochondrial division. Trends Cell Biol 31(4):241–253

    Article  PubMed  Google Scholar 

  20. Bordoni L, Gabbianelli R (2020) Mitochondrial DNA and neurodegeneration: any role for dietary antioxidants? Antioxidants 9(8):1–24

    Article  Google Scholar 

  21. Lee S, Wang W, Hwang J, Namgung U, Min KT (2019) Increased ER–mitochondria tethering promotes axon regeneration. Proc Natl Acad Sci U S A 116(32):16074–16079

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96(1):17–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gӧbel J, Engelhardt E, Pelzer P, Sakthivelu V, Jahn HM, Jevtic M et al (2020) Mitochondria-endoplasmic reticulum contacts in reactive astrocytes promote vascular remodeling. Cell Metab 31(4):791-808.e8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nunes MA, Schöwe NM, Monteiro-Silva KC, Baraldi-Tornisielo T, Souza SIG, Balthazar J et al (2015) Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer’s disease. PLoS ONE 10(11):1–26

    Article  Google Scholar 

  25. Rivera AD, Butt AM (2019) Astrocytes are direct cellular targets of lithium treatment: novel roles for lysyl oxidase and peroxisome-proliferator activated receptor-γ as astroglial targets of lithium. Transl Psychiatry. 9:1

    Article  CAS  Google Scholar 

  26. Kumar A, Sidhu J, Goyal A (2022) Alzheimer disease. Nih.gov. StatPearls Publishing

  27. Xu L, Wang X, Tong C (2020) Endoplasmic reticulum–mitochondria contact sites and neurodegeneration. Front Cell Dev Biol 18(8):1–12

  28. Adami PVM, Nichtová Z, Weaver DB, Bartok A, Wisniewski T, Jones DR et al (2019) Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer’s disease. J Cell Sci. 132:20

    Google Scholar 

  29. Leal NS, Dentoni G, Schreiner B, Naia L, Piras A, Graff C et al (2020) Amyloid Β-peptide increases mitochondria-endoplasmic reticulum contact altering mitochondrial function and autophagosome formation in Alzheimer’s disease-Related Models. Cells 9(12):1–21

    Article  Google Scholar 

  30. Dentoni G, Castro-Aldrete L, Naia L, Ankarcrona M (2022) The potential of small molecules to modulate the mitochondria–endoplasmic reticulum interplay in Alzheimer’s disease. Front Cell Dev Biol 10:1–20

    Article  Google Scholar 

  31. Leal NS, Martins LM (2021) Mind the gap: mitochondria and the endoplasmic reticulum in neurodegenerative diseases. Biomedicines 9(2):1–35

    Article  Google Scholar 

  32. Cieri D, Vicario M, Vallese F, D’Orsi B, Berto P, Grinzato A et al (1864) (2018) Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca 2+ handling. Biochim Biophys Acta - Mol Basis Dis [Internet] 10:3247–56. https://doi.org/10.1016/j.bbadis.2018.07.011

    Article  CAS  Google Scholar 

  33. Zafar S, Yaddanapudi SS (2019) Parkinson disease Nih.gov. StatPearls Publishing

  34. Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D et al (2019) Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 14(1):1–18

    Article  Google Scholar 

  35. Vrijsen S, Vrancx C, Del Vecchio M, Swinnen JV, Agostinis P, Winderickx J et al (2022) Inter-organellar communication in Parkinson’s and Alzheimer’s disease: looking beyond endoplasmic reticulum-mitochondria contact sites. Front Neurosci. [Internet] 21(16):900338. https://doi.org/10.3389/fnins.2022.900338

  36. Calì T, Ottolini D, Negro A, Brini M (1832) (2013) Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochim Biophys Acta - Mol Basis Dis [Internet] 4:495–508. https://doi.org/10.1016/j.bbadis.2013.01.004. (Available from)

    Article  CAS  Google Scholar 

  37. Chang CY, Liang MZ, Chen L (2019) Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl Neurodegener 8(1):1–12

    Article  Google Scholar 

  38. Rebelo APM, Bello FD, Knedlik T, Kaar N, Volpin F, Shin SH et al (2020) Chemical modulation of mitochondria–endoplasmic reticulum contact sites. Cells 9(7):1637. https://doi.org/10.3390/cells9071637

  39. Eisenberg-Bord M, Shai N, Schuldiner M, Bohnert M (2016) A tether is a tether is a tether: tethering at membrane contact sites. Dev Cell 39(4):395–409

    Article  CAS  PubMed  Google Scholar 

  40. Lau DHW, Paillusson S, Hartopp N, Rupawala H, Mórotz GM, Gomez-Suaga P et al (2020) Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer’s disease brain. Neurobiol Dis. [Internet] 143:105020. https://doi.org/10.1016/j.nbd.2020.105020

  41. Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S et al (2016) Critical reappraisal confirms that mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci U S A 113(40):11249–11254

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madreiter-Sokolowski CT, Gottschalk B, Parichatikanond W, Eroglu E, Klec C, Waldeck-Weiermair M et al (2016) Resveratrol specifically kills cancer cells by a devastating increase in the Ca 2+ coupling between the greatly tethered endoplasmic reticulum and mitochondria. Cell Physiol Biochem 39(4):1404–1420

    Article  CAS  PubMed  Google Scholar 

  44. Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X et al (2016) ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells. Int J Oncol 49(6):2507–2519

    Article  CAS  PubMed  Google Scholar 

  45. Ardekani AM, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2(4):161–179

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30(3):556–568

    Article  CAS  PubMed  Google Scholar 

  47. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160(7):1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi X, Zhao M, Fu C, Fu A (2017) Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion [Internet] 34:91–100. https://doi.org/10.1016/j.mito.2017.02.005. (Available from)

    Article  CAS  PubMed  Google Scholar 

  49. Chang JC, Hoel F, Liu KH, Wei YH, Cheng FC, Kuo SJ et al (2017) Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci Rep [Internet] 7(1):1–15. https://doi.org/10.1038/s41598-017-10870-5. (Available from)

    Article  CAS  Google Scholar 

  50. Chang JC, Chao YC, Chang HS, Wu YL, Chang HJ, Lin YS et al (2021) Intranasal delivery of mitochondria for treatment of Parkinson’s disease model rats lesioned with 6-hydroxydopamine. Sci Rep [Internet] 11(1):1–14. https://doi.org/10.1038/s41598-021-90094-w. (Available from)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Vijaya Harini Sathyamurthy, Yoghalakshmi Nagarajan and Venkatachalam Deepa Parvathi contributed to the concept, review of literature and manuscript preparation. Vijaya Harini Sathyamurthy and Yoghalakshmi Nagarajan contributed equally towards the draft and figures. Venkatachalam Deepa Parvathi supervised the research work and finalised (review and editing) the manuscript.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Venkatachalam Deepa Parvathi.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyamurthy, V.H., Nagarajan, Y. & Parvathi, V.D. Mitochondria-Endoplasmic Reticulum Contact Sites (MERCS): A New Axis in Neuronal Degeneration and Regeneration. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03971-6

Keywords

Navigation