Skip to main content

Advertisement

Log in

Total Flavonoids of Aurantii Fructus Immaturus Regulate miR-5100 to Improve Constipation by Targeting Fzd2 to Alleviate Calcium Balance and Autophagy in Interstitial Cells of Cajal

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aurantii Fructus Immaturus total flavonoids (AFIF) is the main effective fraction extracted from AFI, which has a good effect on promoting gastrointestinal motility. This study aimed to investigate AFIF which regulates miR-5100 to improve constipation symptoms in mice by targeting Frizzled-2 (Fzd2) to alleviate interstitial cells of Cajal (ICCs) calcium ion balance and autophagy apoptosis. The constipated mouse model was induced by an antibiotic suspension, and then treated with AFIF. RNA-seq sequencing, luciferase assay, immunofluorescence staining, transmission electron microscopy, ELISA, flow cytometry, quantitative polymerase chain reaction (PCR), and Western blot were applied in this study. The results showed that AFIF improved constipation symptoms in antibiotic-induced constipated mice, and decreased the autophagy-related protein Beclin1 levels and the LC3-II/I ratio in ICCs. miR-5100 and its target gene Fzd2 were screened as key miRNAs and regulator associated with autophagy. Downregulation of miR-5100 caused increased expression of Fzd2, decreased proliferation activity of ICCs, increased apoptotic cells, and enhanced calcium ion release and autophagy signals. After AFIF treatment, miR-5100 expression was upregulated and Fzd2 was downregulated, while autophagy-related protein levels and calcium ion concentration decreased. Furthermore, AFIF increased the levels of SP, 5-HT, and VIP, and increased the expression of PGP9.5, Sy, and Cx43, which alleviated constipation by improving the integrity of the enteric nervous system network. In conclusion, AFIF could attenuate constipation symptoms by upregulating the expression of miR-5100 and targeting inhibition of Fzd2, alleviating calcium overload and autophagic death of ICCs, regulating the content of neurotransmitters, and enhancing the integrity of the enteric nervous system network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the current study are available from the corresponding author on reasonable request.

References

  1. Camilleri M, Ford AC, Mawe GM, Dinning PG, Rao SS, Chey WD, Simren M, Lembo A et al (2017) Chronic constipation. Nat Rev Dis Primers 3:17095. https://doi.org/10.1038/nrdp.2017.95

    Article  PubMed  Google Scholar 

  2. Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC (2020) Functional gastrointestinal disorders: advances in understanding and management. Lancet 396(10263):1664–1674. https://doi.org/10.1016/S0140-6736(20)32115-2

    Article  CAS  PubMed  Google Scholar 

  3. Herrington H (2017) Constipation. Clin Gastroenterol Hepatol S1542–3565(17):31416–31417. https://doi.org/10.1016/j.cgh.2017.11.043

    Article  Google Scholar 

  4. Schiller LR (2019) Chronic constipation: new insights, better outcomes? Lancet Gastroenterol Hepatol 4(11):873–882. https://doi.org/10.1016/s2468-1253(19)30199-2

    Article  PubMed  Google Scholar 

  5. Bharucha AE, Lacy BE (2020) Mechanisms, evaluation, and management of chronic constipation. Gastroenterology 158(5):1232-1249 e1233. https://doi.org/10.1053/j.gastro.2019.12.034

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Q, Chen YY, Xu DQ, Yue SJ, Fu RJ, Yang J, Xing LM, Tang YP (2021) Action mode of gut motility, fluid and electrolyte transport in chronic constipation. Front Pharmacol 12:630249. https://doi.org/10.3389/fphar.2021.630249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wedel T, Spiegler J, Soellner S, Roblick UJ, Schiedeck TH, Bruch HP, Krammer HJ (2002) Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology 123(5):1459–1467. https://doi.org/10.1053/gast.2002.36600

    Article  PubMed  Google Scholar 

  8. Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130

    Article  CAS  PubMed  Google Scholar 

  9. Kim HJ, Kim BJ (2017) Naringenin inhibits pacemaking activity in interstitial cells of Cajal from murine small intestine. Integr Med Res 6(2):149–155. https://doi.org/10.1016/j.imr.2017.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  10. Komuro T (2006) Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol 576(Pt 3):653–658. https://doi.org/10.1113/jphysiol.2006.116624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hirst GD, Edwards FR (2004) Role of interstitial cells of Cajal in the control of gastric motility. J Pharmacol Sci 96(1):1–10. https://doi.org/10.1254/jphs.crj04002x

    Article  CAS  PubMed  Google Scholar 

  12. Cohen M, Cazals-Hatem D, Duboc H, Sabate JM, Msika S, Slove AL, Panis Y, Coffin B (2017) Evaluation of interstitial cells of Cajal in patients with severe colonic inertia requiring surgery: a clinical-pathological study. Colorectal Dis 19(5):462–467. https://doi.org/10.1111/codi.13511

    Article  CAS  PubMed  Google Scholar 

  13. He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J, Farrugia G (2000) Decreased interstitial cell of cajal volume in patients with slow-transit constipation. Gastroenterology 118(1):14–21. https://doi.org/10.1016/s0016-5085(00)70409-4

    Article  CAS  PubMed  Google Scholar 

  14. Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD, Vanderwinden JM et al (2013) Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 4:1630. https://doi.org/10.1038/ncomms2626

    Article  CAS  PubMed  Google Scholar 

  15. Koh SD, Sanders KM, Ward SM (1998) Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol 513(Pt 1):203–213. https://doi.org/10.1111/j.1469-7793.1998.203by.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility–insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9(11):633–645. https://doi.org/10.1038/nrgastro.2012.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cobine CA, Hannah EE, Zhu MH, Lyle HE, Rock JR, Sanders KM, Ward SM, Keef KD (2017) ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol 595(6):2021–2041. https://doi.org/10.1113/JP273618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan RQ, Zhang Z, Ju J, Ling JH (2019) Effect of Chaihu Shugan powder-contained serum on glutamate-induced autophagy of interstitial cells of Cajal in the rat gastric antrum. Evid Based Complement Alternat Med 2019:7318616. https://doi.org/10.1155/2019/7318616

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang LM, Zeng LJ, Deng J, Zhang YQ, Wang YJ, Xie TY, Ling JH (2018) Investigation of autophagy and differentiation of myenteric interstitial cells of Cajal in the pathogenesis of gastric motility disorders in rats with functional dyspepsia. Biotechnol Appl Biochem 65(4):533–539. https://doi.org/10.1002/bab.1635

    Article  CAS  PubMed  Google Scholar 

  20. Filippi-Chiela EC, Viegas MS, Thome MP, Buffon A, Wink MR, Lenz G (2016) Modulation of autophagy by calcium signalosome in human disease. Mol Pharmacol 90(3):371–384. https://doi.org/10.1124/mol.116.105171

    Article  CAS  PubMed  Google Scholar 

  21. Cui X, Luo Y, Li C, Li Y, Wang Z (2015) Changes of intracellular Ca2+ in quercetin-induced autophagy progression. Acta Biochim Biophys Sin 47(11):908–914. https://doi.org/10.1093/abbs/gmv096. (Shanghai)

    Article  CAS  PubMed  Google Scholar 

  22. East DA, Campanella M (2013) Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy. Autophagy 9(11):1710–1719. https://doi.org/10.4161/auto.25367

    Article  CAS  PubMed  Google Scholar 

  23. Committee CP (2020) Pharmacopoeia of the People’s Republic of China (Part I). Chinese Medical Science and Technology Press, Beijing

    Google Scholar 

  24. Zhang XJ, Zhao LY, Li JH, Zhang N, Fan ZW (2021) Research review on Fructus aurantii Immaturus. Acta Chin Med Pharmacol 49(1):94–100

    Google Scholar 

  25. Wang L, Wu F, Hong Y, Shen L, Zhao L, Lin X (2022) Research progress in the treatment of slow transit constipation by traditional Chinese medicine. J Ethnopharmacol 290:115075. https://doi.org/10.1016/j.jep.2022.115075

    Article  PubMed  Google Scholar 

  26. Xu SS, Xu J, Zhang XM, Zhang TJ, Liu CX (2018) Research progress on Citri Reticulatae Pericarpium, Aurantii Fructus Immaturus, and Aurantii Fructus and Q-marker predictive analysis. Chin Tradit Herb Drugs 49(1):35–44. https://doi.org/10.7501/j.issn.0253-2670.2018.01.004

    Article  Google Scholar 

  27. Wang C, Ren Q, Chen XT, Song ZQ, Ning ZC, Gan JH, Ma XL, Liang DR et al (2018) System pharmacology-based strategy to decode the synergistic mechanism of Zhi-zhu Wan for functional dyspepsia. Front Pharmacol 9:841. https://doi.org/10.3389/fphar.2018.00841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan S, Hao M, Yang H, Sun M, Wu B, Yue Y, Wang X (2020) Metabolomics study on the therapeutic effect of the Chinese herb pair Fructus Aurantii Immaturus and Rhizoma Atractylodis Macrocephalae in constipated rats based on UPLC-Q/TOF-MS analysis. Ann Palliat Med 9(5):2837–2852. https://doi.org/10.21037/apm-20-280

  29. Qi QH, Wang J, Liang GG, Wu XZ (2007) Da-Cheng-Qi-Tang promotes the recovery of gastrointestinal motility after abdominal surgery in humans. Dig Dis Sci 52(6):1562–1570. https://doi.org/10.1007/s10620-007-9751-2

    Article  PubMed  Google Scholar 

  30. Dou DB, Cai G, Wang SP, Ni KZ, Tang JF (2002) Clinical studies on functional dyspepsia treated with different dosage-form of Zhishi Xiaopi Pill Recipe. Chin J Integr Med 8(3):186–190

    Google Scholar 

  31. Wang SY, Liu YP, Fan YH, Zhang L, Cai LJ, Lv B (2015) Mechanism of aqueous Fructus Aurantii Immaturus extracts in neuroplexus of cathartic colons. World J Gastroenterol 21(31):9358–9366. https://doi.org/10.3748/wjg.v21.i31.9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan S, Yue YZ, Sun MM, Wu BS, Wang XP (2020) Suppressive effect of Aurantii Fructus Immaturus and Atractylodis Macrocephalae Rhizoma on glutamic acid-induced autophagy of interstitial cells of Cajal. J Integr Med 18(4):334–343. https://doi.org/10.1016/j.joim.2020.04.005

    Article  PubMed  Google Scholar 

  33. Chen HF, Zhang WG, Yuan JB, Li YG, Yang SL, Yang WL (2012) Simultaneous quantification of polymethoxylated flavones and coumarins in Fructus Aurantii and Fructus Aurantii Immaturus using HPLC-ESI-MS/MS. J Pharm Biomed Anal 59:90–95. https://doi.org/10.1016/j.jpba.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Li Z, Wang W, Sooranna SR, Shi Y, Chen Y, Wu C, Zeng J et al (2018) Chemical profiles and simultaneous quantification of Aurantii fructus by use of HPLC-Q-TOF-MS combined with GC-MS and HPLC methods. Molecules 23(9):2189. https://doi.org/10.3390/molecules23092189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang LF, Liu XL, Li HT, Chen QY, Wang Y, Zou B, Yang M, Zhang XF et al (2020) Mechanism of Aurantii Fructus Immaturus volatile oil in treatment of slow transit constipation based on network pharmacology. Chin J Chin Mater Med 45(8):1909–1917

    Google Scholar 

  36. Yan L, Yu L, Zhao L, Wang D, Qin D, Fan H, Cheng L, Qiu M et al (2019) Efficacy of Weikang Pian in patients with functional dyspepsia: a double-blind, randomized, placebo-controlled clinical trial. Evid Based Complement Alternat Med 2019:4827046. https://doi.org/10.1155/2019/4827046

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tan W, Li Y, Wang Y, Zhang Z, Wang T, Zhou Q, Wang X (2017) Anti-coagulative and gastrointestinal motility regulative activities of Fructus Aurantii Immaturus and its effective fractions. Biomed Pharmacother 90:244–252. https://doi.org/10.1016/j.biopha.2017.03.060

    Article  CAS  PubMed  Google Scholar 

  38. Wang S, Bao YR, Li TJ, Yu T, Chang X, Yang GL, Meng XS (2017) Mechanism of Fructus Aurantii flavonoids promoting gastrointestinal motility: from organic and inorganic endogenous substances combination point of view. Pharmacogn Mag 13(51):372–377. https://doi.org/10.4103/pm.pm_179_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong Y, Ren X, Liu W, Sun K, Chen B, Liu B, Yu X, Chen Q et al (2021) miR-128 participates in the pathogenesis of chronic constipation by regulating the p38alpha/M-CSF inflammatory signaling pathway. Am J Physiol Gastrointest Liver Physiol 321(4):G436–G447. https://doi.org/10.1152/ajpgi.00114.2021

    Article  CAS  PubMed  Google Scholar 

  40. Krishna CV, Singh J, Thangavel C, Rattan S (2016) Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting. Am J Physiol Gastrointest Liver Physiol 310(7):G449-459. https://doi.org/10.1152/ajpgi.00445.2015

    Article  PubMed  PubMed Central  Google Scholar 

  41. Park C, Yan W, Ward SM, Hwang SJ, Wu Q, Hatton WJ, Park JK, Sanders KM et al (2011) MicroRNAs dynamically remodel gastrointestinal smooth muscle cells. PLoS ONE 6(4):e18628. https://doi.org/10.1371/journal.pone.0018628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng J, Yang S, Yuan Q, Chen Y, Li D, Sun H, Tan X, Zhang F et al (2017) Acupuncture ameliorates postoperative lleus via IL-6-miR-19a-KIT axis to protect interstitial cells of Cajal. Am J Chin Med 45(4):737–755. https://doi.org/10.1142/S0192415X17500392

    Article  CAS  PubMed  Google Scholar 

  43. Zhao S, Chen Q, Kang X, Kong B, Wang Z (2018) Aberrantly expressed genes and miRNAs in slow transit constipation based on RNA-Seq analysis. Biomed Res Int 2018:2617432. https://doi.org/10.1155/2018/2617432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inagawa H, Saika T, Nishiyama N, Nisizawa T, Kohchi C, Uenobe M, Soma GI (2017) Improvement effect of dewaxed brown rice on constipation in antibiotic-treated mice. In Vivo 31(4):573–577. https://doi.org/10.21873/invivo.11096

  45. Hu Q, Sun DF, Sun LJ, Wang C, Hu LH, Fang ZJ, Deng Q (2020) Intervention effect of mussel and oyster complex on constipation in mice with intestinal flora disorder. Mod Food Sci Technol 36(10):16–26. https://doi.org/10.13982/j.mfst.1673-9078.2020.10.0397

  46. Zhao Q, Xing F, Tao Y, Liu H, Huang K, Peng Y, Feng N, Liu C (2020) Xiaozhang Tie improves intestinal motility in rats with cirrhotic ascites by regulating the stem cell factor/c-kit pathway in interstitial cells of Cajal. Front Pharmacol 11:1. https://doi.org/10.3389/fphar.2020.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou Y, Wang Z, Huang Y, Bai C, Zhang X, Fang M, Ju Z, Liu B (2022) Membrane dynamics of ATG4B and LC3 in autophagosome formation. J Mol Cell Biol 13(12):853–863. https://doi.org/10.1093/jmcb/mjab059

    Article  CAS  PubMed  Google Scholar 

  48. Niu LJ, Xu RX, Zhang P, Du MX, Jiang XD (2012) Suppression of Frizzled-2-mediated Wnt/Ca(2)(+) signaling significantly attenuates intracellular calcium accumulation in vitro and in a rat model of traumatic brain injury. Neuroscience 213:19–28. https://doi.org/10.1016/j.neuroscience.2012.03.057

    Article  CAS  PubMed  Google Scholar 

  49. Zhuang Z, Chen M, Niu J, Qu N, Ji B, Duan X, Liu Z, Liu X et al (2019) The manufacturing process of kiwifruit fruit powder with high dietary fiber and its laxative effect. Molecules 24(21):3813. https://doi.org/10.3390/molecules24213813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. King SK, Sutcliffe JR, Ong SY, Lee M, Koh TL, Wong SQ, Farmer PJ, Peck CJ et al (2010) Substance P and vasoactive intestinal peptide are reduced in right transverse colon in pediatric slow-transit constipation. Neurogastroenterol Motil 22(8):883–892, e234. https://doi.org/10.1111/j.1365-2982.2010.01524.x

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Wang Q, Kuerban K, Dong M, Qi F, Li G, Ling J, Qiu W et al (2019) Colonic electrical stimulation promotes colonic motility through regeneration of myenteric plexus neurons in slow transit constipation beagles. Biosci Rep 39(5). 10.1042/BSR20182405

  52. Li S, He Y, Zhang H, Zheng R, Xu R, Liu Q, Tang S, Ke X et al (2020) Formulation of traditional Chinese medicine and its application on intestinal flora of constipated rats. Microb Cell Fact 19(1):212. https://doi.org/10.1186/s12934-020-01473-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu M, Li Y, Gu Y (2020) Hesperidin improves colonic motility in loeramide-induced constipation rat model via 5-hydroxytryptamine 4R/cAMP signaling pathway. Digestion 101(6):692–705. https://doi.org/10.1159/000501959

    Article  CAS  PubMed  Google Scholar 

  54. Jang Y, Kim TK, Shim WS (2013) Naringin exhibits in vivo prokinetic activity via activation of ghrelin receptor in gastrointestinal motility dysfunction rats. Pharmacology 92(3–4):191–197. https://doi.org/10.1159/000354579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from the Affiliated Hospital of Southwest Medical University and the North Sichuan Medical College.

Funding

This study was supported by the Youth Fund of the National Natural Science Foundation of China (No. 82004173), Science Fund of the National Natural Science Foundation of China (No. 82074429), and the Science and Technology Research Special Project of Sichuan Provincial Administration of Traditional Chinese Medicine (No. 2020JC0063).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to this work. YZ and YW contributed equally to this work. YZ, YW, and XGT conceived and designed the experiments; TYC, JL, and SYT performed most of the experiments; FZ and QL contributed to data collection and analysis; YZ and YW wrote the manuscript; XGT revised and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuegui Tang.

Ethics declarations

Ethics Approval

Animal experiments were approved and conducted in accordance with the guidelines of the Experimental Animal Ethics Committee of West China Hospital of Sichuan University (approval No. 20221111003).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12532 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhan, Y., Chen, T. et al. Total Flavonoids of Aurantii Fructus Immaturus Regulate miR-5100 to Improve Constipation by Targeting Fzd2 to Alleviate Calcium Balance and Autophagy in Interstitial Cells of Cajal. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03958-3

Keywords

Navigation