Skip to main content

Advertisement

Log in

Crosstalk Among Glial Cells in the Blood–Brain Barrier Injury After Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Blood–brain barrier (BBB) is comprised of brain microvascular endothelial cells (ECs), astrocytes, perivascular microglia, pericytes, neuronal processes, and the basal lamina. As a complex and dynamic interface between the blood and the central nervous system (CNS), BBB is responsible for transporting nutrients essential for the normal metabolism of brain cells and hinders many toxic compounds entering into the CNS. The loss of BBB integrity following stroke induces tissue damage, inflammation, edema, and neural dysfunction. Thus, BBB disruption is an important pathophysiological process of acute ischemic stroke. Understanding the mechanism underlying BBB disruption can uncover more promising biological targets for developing treatments for ischemic stroke. Ischemic stroke-induced activation of microglia and astrocytes leads to increased production of inflammatory mediators, containing chemokines, cytokines, matrix metalloproteinases (MMPs), etc., which are important factors in the pathological process of BBB breakdown. In this review, we discussed the current knowledges about the vital and dual roles of astrocytes and microglia on the BBB breakdown during ischemic stroke. Specifically, we provided an updated overview of phenotypic transformation of microglia and astrocytes, as well as uncovered the crosstalk among astrocyte, microglia, and oligodendrocyte in the BBB disruption following ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Zhou Z, Okamoto K, Onodera J et al (2021) Astrocytic cAMP modulates memory via synaptic plasticity. Proc Natl Acad Sci U S A 118:e2016584118

  2. Vermeulen TD, Benbaruj J, Brown CV, Shafer BM, Floras JS, Foster GE (2020) Acute intermittent hypercapnic hypoxia and cerebral neurovascular coupling in males and females. Exp Neurol 334:113441

    Article  PubMed  Google Scholar 

  3. Heo C, Kwak HJ, Ngo LH, Woo RS, Lee SJ (2023) Implementation of the neuro-glia-vascular unit through co-culture of adult neural stem cells and vascular cells and transcriptomic analysis of diverse Abeta assembly types. J Neurosci Methods 402:110029

    Article  PubMed  Google Scholar 

  4. Wang CH, Chang WT, Huang CH, Tsai MS, Liu SH, Chen WJ (2020) Cerebral blood flow-guided manipulation of arterial blood pressure attenuates hippocampal apoptosis after asphyxia-induced cardiac arrest in rats. J Am Heart Assoc 9:e016513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Agrawal S, Placek MM, White D et al (2023) Studying Trends of Auto-Regulation in Severe Head Injury in Paediatrics (STARSHIP): protocol to study cerebral autoregulation in a prospective multicentre observational research database study. BMJ Open 13:e071800

    Article  PubMed  Google Scholar 

  6. Song S, Huang H, Guan X et al (2021) Activation of endothelial Wnt/beta-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog Neurobiol 199:101963

    Article  PubMed  CAS  Google Scholar 

  7. Nguyen QL, Okuno N, Hamashima T et al (2021) Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice. Angiogenesis 24:35–46

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y, Wang X, Zhang X et al (2020) D1 receptor-mediated endogenous tPA upregulation contributes to blood-brain barrier injury after acute ischaemic stroke. J Cell Mol Med 24:9255–9266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu M, Xu Z, Wang L et al (2020) Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation 17:270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cottarelli A, Shahriar S, Arac A et al (2023) Rab7a activation promotes degradation of select tight junction proteins at the blood-brain barrier after ischemic stroke. bioRxiv. Preprint

  11. Taler M, Aronovich R, Henry Hornfeld S et al (2021) Regulatory effect of lithium on hippocampal blood-brain barrier integrity in a rat model of depressive-like behavior. Bipolar Disord 23:55–65

    Article  PubMed  CAS  Google Scholar 

  12. He J, Shen R, Liu Q et al (2022) RGD nanoarrays with nanospacing gradient selectively induce orientation and directed migration of endothelial and smooth muscle cells. ACS Appl Mater Interfaces 14:37436–37446

    Article  PubMed  CAS  Google Scholar 

  13. Hasannejad-Asl B, Pooresmaeil F, Choupani E et al (2023) Nanoparticles as powerful tools for crossing the blood-brain barrier. CNS Neurol Disord: Drug Targets 22:18–26

    Article  PubMed  CAS  Google Scholar 

  14. Orlando A, Linsalata M, Bianco G et al (2018) Lactobacillus rhamnosus GG protects the epithelial barrier of Wistar rats from the pepsin-trypsin-digested gliadin (PTG)-induced enteropathy. Nutrients 10:1698

  15. Guo W, Wang P, Liu ZH, Ye P (2018) Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate. Int J Oral Sci 10:e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Aydin S, Billur D, Kizil S et al (2020) Evaluation of blood-testis barrier integrity in terms of adhesion molecules in nonobstructive azoospermia. Andrologia 52:e13636

    Article  PubMed  CAS  Google Scholar 

  17. Chrifi I, Louzao-Martinez L, Brandt MM et al (2019) CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions. Angiogenesis 22:75–93

    Article  PubMed  CAS  Google Scholar 

  18. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78

    Article  PubMed  CAS  Google Scholar 

  19. Xie Y, He L, Lugano R et al (2021) Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing. JCI Insight 6:e150861

  20. Fisher D, Thomas KA, Abdul-Rasool S (2020) The synergistic and neuroprotective effects of alcohol-antioxidant treatment on blood-brain barrier endothelial cells. Alcohol Clin Exp Res 44:1997–2007

    Article  PubMed  CAS  Google Scholar 

  21. Kaddoumi A, Denney TS Jr, Deshpande G et al (2022) Extra-virgin olive oil enhances the blood-brain barrier function in mild cognitive impairment: a randomized controlled trial. Nutrients 14:5102

  22. Zhang L, Zhou L, Bao L et al (2021) SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 6:337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ayloo S, Lazo CG, Sun S, Zhang W, Cui B, Gu C (2022) Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier. Neuron 110(1641–1655):e1646

    Google Scholar 

  24. Kenny A, Plank MJ, David T (2018) Macro scale modelling of cortical spreading depression and the role of astrocytic gap junctions. J Theor Biol 458:78–91

    Article  PubMed  CAS  Google Scholar 

  25. Liu S, Chang L, Wei C (2019) The sonic hedgehog pathway mediates Tongxinluo capsule-induced protection against blood-brain barrier disruption after ischaemic stroke in mice. Basic Clin Pharmacol Toxicol 124:660–669

    Article  PubMed  CAS  Google Scholar 

  26. Yue Q, Xu Y, Lin L, Hoi MPM (2022) Canthin-6-one (CO) from Picrasma quassioides (D.Don) Benn. ameliorates lipopolysaccharide (LPS)-induced astrocyte activation and associated brain endothelial disruption. Phytomedicine 101:154108

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Q, Liu C, Shi R et al (2022) Blocking C3d(+)/GFAP(+) A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke. Aging Dis 13:943–959

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li G, Jiang X, Liang X et al (2023) BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-kappaB pathway in acute lung injury mice model. Life Sci 313:121310

    Article  PubMed  CAS  Google Scholar 

  29. Koch K, Lindner M, Fleck AK et al (2022) CNS pericytes modulate local T cell infiltration in EAE. Int J Mol Sci 23:13081

  30. Khan A, Ni W, Lopez-Giraldez F, Kluger MS, Pober JS, Pierce RW (2021) Tumor necrosis factor-induced ArhGEF10 selectively activates RhoB contributing to human microvascular endothelial cell tight junction disruption. FASEB J 35:e21627

    Article  PubMed  CAS  Google Scholar 

  31. Jang M, Han S, Cho H (2023) Correspondence between development of cytotoxic edema and cerebrospinal fluid volume and flow in the third ventricle after ischemic stroke. J Stroke Cerebrovasc Dis 32:107200

    Article  PubMed  Google Scholar 

  32. Shi ZF, Fang Q, Chen Y et al (2021) Methylene blue ameliorates brain edema in rats with experimental ischemic stroke via inhibiting aquaporin 4 expression. Acta Pharmacol Sin 42:382–392

    Article  PubMed  CAS  Google Scholar 

  33. Momenabadi S, Vafaei AA, Bandegi AR, Zahedi-Khorasani M, Mazaheri Z, Vakili A (2020) Oxytocin reduces brain injury and maintains blood-brain barrier integrity after ischemic stroke in mice. NeuroMol Med 22:557–571

    Article  CAS  Google Scholar 

  34. Lee K, Yoo RE, Cho WS et al (2023) Blood-brain barrier disruption imaging in postoperative cerebral hyperperfusion syndrome using DCE-MRI. J Cereb Blood Flow Metab 44:271678X231212173

  35. Gono R, Sugimoto K, Yang C et al (2023) Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats. J Cereb Blood Flow Metab 43:812–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang R, Zhu Y, Liu Z et al (2021) Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138:91–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Li M, Chen S, Shi X et al (2018) Cell permeable HMGB1-binding heptamer peptide ameliorates neurovascular complications associated with thrombolytic therapy in rats with transient ischemic stroke. J Neuroinflammation 15:237

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu X, Bai Y, Han B et al (2022) Extracellular vesicle-mediated delivery of circDYM alleviates CUS-induced depressive-like behaviours. J Extracell Vesicles 11:e12185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Logsdon AF, Schindler AG, Meabon JS et al (2020) Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 10:9420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bellut M, Papp L, Bieber M, Kraft P, Stoll G, Schuhmann MK (2021) NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis 13:20

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei P, Wang K, Luo C et al (2021) Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury. J Neuroinflammation 18:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Howe MD, Furr JW, Munshi Y et al (2019) Transforming growth factor-beta promotes basement membrane fibrosis, alters perivascular cerebrospinal fluid distribution, and worsens neurological recovery in the aged brain after stroke. Geroscience 41:543–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yang ZH, Liu YJ, Ban WK et al (2023) Pterostilbene alleviated cerebral ischemia/reperfusion-induced blood-brain barrier dysfunction via inhibiting early endothelial cytoskeleton reorganization and late basement membrane degradation. Food Funct 14:8291–8308

    Article  PubMed  CAS  Google Scholar 

  44. Skuja S, Jain N, Smirnovs M, Murovska M (2022) Alcohol-induced alterations in the vascular basement membrane in the substantia nigra of the adult human brain. Biomedicines 10:830

  45. Yao Y (2019) Basement membrane and stroke. J Cereb Blood Flow Metab 39:3–19

    Article  PubMed  CAS  Google Scholar 

  46. Yu H, Luo H, Chang L et al (2022) The NEDD8-activating enzyme inhibitor MLN4924 reduces ischemic brain injury in mice. Proc Natl Acad Sci U S A 119:e2111896119

  47. Yao SQ, Ye Y, Li Q et al (2024) YangXueQingNaoWan attenuated blood brain barrier disruption after thrombolysis with tissue plasminogen activator in ischemia stroke. J Ethnopharmacol 318:117024

    Article  PubMed  CAS  Google Scholar 

  48. Wang HJ, Ran HF, Yin Y et al (2022) Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharmacol Sin 43:1670–1685

    Article  PubMed  CAS  Google Scholar 

  49. Spitzer D, Guerit S, Puetz T et al (2022) Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke. Acta Neuropathol 144:305–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kameyama T, Miyata M, Shiotani H et al (2023) Heterogeneity of perivascular astrocyte endfeet depending on vascular regions in the mouse brain. iScience 26:108010

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thomas CI, Ryan MA, Mcnabb MC, Kamasawa N, Scholl B (2023) Astrocyte coverage of excitatory synapses correlates to measures of synapse structure and function in primary visual cortex. bioRxiv: Preprint

  52. Darvishmolla M, Heysieattalab S, Saeedi N, Hosseinmardi N, Janahmadi M (2022) Involvement of hippocampal astrocytic connexin-43 in morphine dependence. Physiol Behav 247:113710

    Article  PubMed  CAS  Google Scholar 

  53. Diaz-Castro B, Robel S, Mishra A (2023) Astrocyte endfeet in brain function and pathology: open questions. Annu Rev Neurosci 46:101–121

    Article  PubMed  CAS  Google Scholar 

  54. Feng XF, Li MC, Lin ZY et al (2023) Tetramethylpyrazine promotes stroke recovery by inducing the restoration of neurovascular unit and transformation of A1/A2 reactive astrocytes. Front Cell Neurosci 17:1125412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Li Y, Xie Y, Liu R et al (2023) Knockout of microglial Hv1 proton channel reduces neurotoxic A1 astrocytes and neuronal damage via the ROS/STAT3 pathway after spinal cord injury. Glia 71:2418–2436

    Article  PubMed  CAS  Google Scholar 

  56. Acioglu C, Li L, Elkabes S (2021) Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 1758:147291

    Article  PubMed  CAS  Google Scholar 

  57. Ma M, Li H, Wu J et al (2020) Roles of prokineticin 2 in subarachnoid hemorrhage-induced early brain injury via regulation of phenotype polarization in astrocytes. Mol Neurobiol 57:3744–3758

    Article  PubMed  CAS  Google Scholar 

  58. Kim Y, Lee S, Zhang H et al (2020) CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J Neuroinflammation 17:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hernandes MS, Lassegue B, Hilenski LL et al (2018) Polymerase delta-interacting protein 2 deficiency protects against blood-brain barrier permeability in the ischemic brain. J Neuroinflammation 15:45

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang N, Guo W, Liu T, Chen X, Lin M (2023) Toll-like receptors (TLR2 and TLR4) antagonist mitigates the onset of cerebral small vessel disease through PI3K/Akt/GSK3beta pathway in stroke-prone renovascular hypertensive rats. Biotechnol Genet Eng Rev 39:1–21

  61. Tan S, Shan Y, Lin Y et al (2019) Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 33:4376–4387

    Article  PubMed  CAS  Google Scholar 

  62. Tunc BS, Toprak F, Toprak SF, Sozer S (2021) In vitro investigation of growth factors including MGF and IGF-1 in neural stem cell activation, proliferation, and migration. Brain Res 1759:147366

    Article  PubMed  CAS  Google Scholar 

  63. Guo X, Kimura A, Namekata K et al (2022) ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A 119:e2103812119

  64. Rakers C, Schleif M, Blank N et al (2019) Stroke target identification guided by astrocyte transcriptome analysis. Glia 67:619–633

    Article  PubMed  Google Scholar 

  65. Schroder LJ, Mulenge F, Pavlou A et al (2023) Dynamics of reactive astrocytes fosters tissue regeneration after cuprizone-induced demyelination. Glia 71:2573–2590

    Article  PubMed  CAS  Google Scholar 

  66. Gao Y, Liu J, Wang J et al (2022) Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer’s disease and the role of glial cells. Brain Pathol 32:e13047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zong X, Li Y, Liu C et al (2020) Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics 10:12090–12110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ (2020) Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol 11:1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Fattorelli N, Martinez-Muriana A, Wolfs L, Geric I, De Strooper B, Mancuso R (2021) Stem-cell-derived human microglia transplanted into mouse brain to study human disease. Nat Protoc 16:1013–1033

    Article  PubMed  CAS  Google Scholar 

  70. Sobierajski E, Lauer G, Aktas M et al (2022) Development of microglia in fetal and postnatal neocortex of the pig, the European wild boar (Sus scrofa). J Comp Neurol 530:1341–1362

    Article  PubMed  CAS  Google Scholar 

  71. Belayev L, Hong SH, Freitas RS et al (2020) DHA modulates MANF and TREM2 abundance, enhances neurogenesis, reduces infarct size, and improves neurological function after experimental ischemic stroke. CNS Neurosci Ther 26:1155–1167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Utz SG, See P, Mildenberger W et al (2020) Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181(557–573):e518

    Google Scholar 

  73. Xingi E, Koutsoudaki PN, Thanou I et al (2023) LPS-induced systemic inflammation affects the dynamic interactions of astrocytes and microglia with the vasculature of the mouse brain cortex. Cells 12:1418

  74. Zhu Y, Yu J, Gong J et al (2021) PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (Albany NY) 13:3405–3427

    Article  PubMed  CAS  Google Scholar 

  75. Kim S, Lee W, Jo H et al (2022) The antioxidant enzyme peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol 54:102347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Han B, Jiang W, Cui P et al (2021) Microglial PGC-1alpha protects against ischemic brain injury by suppressing neuroinflammation. Genome Medicine 13:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Takagi S, Furube E, Nakano Y, Morita M, Miyata S (2019) Microglia are continuously activated in the circumventricular organs of mouse brain. J Neuroimmunol 331:74–86

    Article  PubMed  CAS  Google Scholar 

  78. Liu X, Zhang M, Liu H et al (2021) Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol 341:113700

    Article  PubMed  CAS  Google Scholar 

  79. Deng W, Mandeville E, Terasaki Y et al (2020) Transcriptomic characterization of microglia activation in a rat model of ischemic stroke. J Cereb Blood Flow Metab 40:S34–S48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. O’neil SM, Witcher KG, Mckim DB, Godbout JP (2018) Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathol Commun 6:129

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhong Y, Gu L, Ye Y et al (2022) JAK2/STAT3 axis intermediates microglia/macrophage polarization during cerebral ischemia/reperfusion injury. Neuroscience 496:119–128

    Article  PubMed  CAS  Google Scholar 

  82. Atta AA, Ibrahim WW, Mohamed AF, Abdelkader NF (2023) Targeting alpha7-nAChR by galantamine mitigates reserpine-induced fibromyalgia-like symptoms in rats: Involvement of cAMP/PKA, PI3K/AKT, and M1/M2 microglia polarization. Eur J Pharmacol 952:175810

    Article  PubMed  CAS  Google Scholar 

  83. Chen AQ, Fang Z, Chen XL et al (2019) Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10:487

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhou C, Su M, Sun P, Tang X, Yin KJ (2021) Nitro-oleic acid-mediated blood-brain barrier protection reduces ischemic brain injury. Exp Neurol 346:113861

    Article  PubMed  CAS  Google Scholar 

  85. Radpour M, Khoshkroodian B, Asgari T, Pourbadie HG, Sayyah M (2023) Interleukin 4 reduces brain hyperexcitability after traumatic injury by downregulating TNF-alpha, upregulating IL-10/TGF-beta, and potential directing macrophage/microglia to the M2 anti-inflammatory phenotype. Inflammation 46:1810–1831

    Article  PubMed  CAS  Google Scholar 

  86. Hsu CH, Pan YJ, Zheng YT, Lo RY, Yang FY (2023) Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARgamma signaling pathways. CNS Neurosci Ther 29:4113–4123

  87. Santos-Galdiano M, Perez-Rodriguez D, Anuncibay-Soto B et al (2018) Celecoxib treatment improves neurologic deficit and reduces selective neuronal loss and glial response in rats after transient middle cerebral artery occlusion. J Pharmacol Exp Ther 367:528–542

    Article  PubMed  CAS  Google Scholar 

  88. Sun Y, Zhu X, Zhu K, Yu J, Cheng L, Hei M (2022) High-mobility group box 1 contributes to hypoxic-ischemic brain damage by facilitating imbalance of microglial polarization through RAGE-PI3K/Akt pathway in neonatal rats. Int J Med Sci 19:2093–2103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Liu J, Tian J, Xie R, Chen L (2023) CK2 inhibitor DMAT ameliorates spinal cord injury by increasing autophagy and inducing anti-inflammatory microglial polarization. Neurosci Lett 805:137222

    Article  PubMed  CAS  Google Scholar 

  90. Ji XC, Shi YJ, Zhang Y, Chang MZ, Zhao G (2020) Reducing suppressors of cytokine signaling-3 (SOCS3) expression promotes M2 macrophage polarization and functional recovery after intracerebral hemorrhage. Front Neurol 11:586905

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tian Y, Liu B, Li Y et al (2022) Activation of RARalpha receptor attenuates neuroinflammation after SAH via promoting M1-to-M2 phenotypic polarization of microglia and regulating Mafb/Msr1/PI3K-Akt/NF-kappaB pathway. Front Immunol 13:839796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Qu Y, Wang L, Mao Y (2022) Gallic acid attenuates cerebral ischemia/re-perfusion-induced blood-brain barrier injury by modifying polarization of microglia. J Immunotoxicol 19:17–26

    Article  PubMed  CAS  Google Scholar 

  93. Esposito E, Hayakawa K, Ahn BJ et al (2018) Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J Neurochem 146:160–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. He Y, Gao Y, Zhang Q, Zhou G, Cao F, Yao S (2020) IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience 437:161–171

    Article  PubMed  CAS  Google Scholar 

  95. Kronenberg G, Uhlemann R, Richter N et al (2018) Distinguishing features of microglia- and monocyte-derived macrophages after stroke. Acta Neuropathol 135:551–568

    Article  PubMed  CAS  Google Scholar 

  96. Wang T, Zhao N, Peng L et al (2020) DJ-1 regulates microglial polarization through P62-mediated TRAF6/IRF5 signaling in cerebral ischemia-reperfusion. Front Cell Dev Biol 8:593890

    Article  PubMed  PubMed Central  Google Scholar 

  97. Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X (2022) The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-kappaB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 914:174660

    Article  PubMed  CAS  Google Scholar 

  98. Yang E, Cai Y, Yao X et al (2019) Tissue plasminogen activator disrupts the blood-brain barrier through increasing the inflammatory response mediated by pericytes after cerebral ischemia. Aging (Albany NY) 11:10167–10182

    Article  PubMed  CAS  Google Scholar 

  99. Matsuda M, Inaba M, Hamaguchi J et al (2022) Local IL-10 replacement therapy was effective for steroid-insensitive asthma in mice. Int Immunopharmacol 110:109037

    Article  PubMed  CAS  Google Scholar 

  100. Michalski D, Keck AL, Grosche J, Martens H, Hartig W (2018) Immunosignals of oligodendrocyte markers and myelin-associated proteins are critically affected after experimental stroke in wild-type and Alzheimer modeling mice of different ages. Front Cell Neurosci 12:23

    Article  PubMed  PubMed Central  Google Scholar 

  101. Niu J, Tsai HH, Hoi KK et al (2019) Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci 22:709–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zhang J, Buller BA, Zhang ZG et al (2022) Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 347:113895

    Article  PubMed  CAS  Google Scholar 

  103. Zhang W, Pu H, Hu X et al (2023) Poststroke intravenous transplantation of human mesenchymal stem cells improves brain repair dynamics and functional outcomes in aged mice. Stroke 54:1088–1098

    Article  PubMed  CAS  Google Scholar 

  104. Meyer N, Richter N, Fan Z et al (2018) Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Rep 22:2383–2394

    Article  PubMed  CAS  Google Scholar 

  105. Zhao Y, Zhu W, Wan T et al (2022) Vascular endothelium deploys caveolin-1 to regulate oligodendrogenesis after chronic cerebral ischemia in mice. Nat Commun 13:6813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Takahashi S (2022) Metabolic contribution and cerebral blood flow regulation by astrocytes in the neurovascular unit. Cells 11:813

  107. Miyamoto N, Magami S, Inaba T et al (2020) The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia 68:1910–1924

    Article  PubMed  Google Scholar 

  108. Girolamo F, Errede M, Longo G et al (2019) Defining the role of NG2-expressing cells in experimental models of multiple sclerosis. A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS One 14:e0213508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Yang Y, Kimura-Ohba S, Thompson JF et al (2018) Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury. Neurobiol Dis 114:95–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Yang X, Chang L, Liu Z et al (2024) Neddylation in the chronically hypoperfused corpus callosum: MLN4924 reduces blood-brain barrier injury via ERK5/KLF2 signaling. Exp Neurol 371:114587

    Article  PubMed  CAS  Google Scholar 

  111. Rost NS, Cougo P, Lorenzano S et al (2018) Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J Cereb Blood Flow Metab 38:75–86

    Article  PubMed  Google Scholar 

  112. Xu J, Wang R, Luo W et al (2023) Oligodendrocyte progenitor cell-specific delivery of lipid nanoparticles loaded with Olig2 synthetically modified messenger RNA for ischemic stroke therapy. Acta Biomater 174:297–313

  113. Zhang Y, Liu Y, Zhang X, Yong VW, Xue M (2023) Omarigliptin protects the integrity of the blood-brain barrier after intracerebral hemorrhage in mice. J Inflamm Res 16:2535–2548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Liu Y, Aguzzi A (2020) NG2 glia are required for maintaining microglia homeostatic state. Glia 68:345–355

    Article  PubMed  Google Scholar 

  115. Kirdajova D, Valihrach L, Valny M et al (2021) Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. Glia 69:2658–2681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lin Q, Lin L, Li L, Zheng YF, Hu DW, Zhang G (2023) Dynamic changes of oligodendrogenesis in neonatal rats with hypoxic-ischemic white matter injury. Brain Res 1817:148495

    Article  PubMed  CAS  Google Scholar 

  117. Liu C, Han S, Zheng J, Wang H, Li S, Li J (2022) EphA4 regulates white matter remyelination after ischemic stroke through Ephexin-1/RhoA/ROCK signaling pathway. Glia 70:1971–1991

    Article  PubMed  Google Scholar 

  118. Piatek P, Lewkowicz N, Michlewska S et al (2022) Natural fish oil improves the differentiation and maturation of oligodendrocyte precursor cells to oligodendrocytes in vitro after interaction with the blood-brain barrier. Front Immunol 13:932383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wang J, He X, Meng H et al (2020) Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia. Neuron 108(876–886):e874

    Google Scholar 

  120. Hattori T, Kaji M, Ishii H et al (2017) CD38 positively regulates postnatal development of astrocytes cell-autonomously and oligodendrocytes non-cell-autonomously. Glia 65:974–989

    Article  PubMed  Google Scholar 

  121. Li T, Niu J, Yu G et al (2020) Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation. Glia 68:1201–1212

    Article  PubMed  Google Scholar 

  122. Liang Z, Wang X, Hao Y et al (2020) The multifaceted role of astrocyte connexin 43 in ischemic stroke through forming hemichannels and gap junctions. Front Neurol 11:703

    Article  PubMed  PubMed Central  Google Scholar 

  123. Niu J, Li T, Yi C et al (2016) Connexin-based channels contribute to metabolic pathways in the oligodendroglial lineage. J Cell Sci 129:1902–1914

    PubMed  CAS  Google Scholar 

  124. Baldassarro VA, Marchesini A, Giardino L, Calza L (2020) Differential effects of glucose deprivation on the survival of fetal versus adult neural stem cells-derived oligodendrocyte precursor cells. Glia 68:898–917

    Article  PubMed  Google Scholar 

  125. Xu Y, Tian Y, Wang Y et al (2021) Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro. Mol Biol Rep 48:5473–5484

    Article  PubMed  CAS  Google Scholar 

  126. An J, He Y, Yin JJ et al (2021) Temporal and spatial evolution of various functional neurons during demyelination induced by cuprizone. J Neurophysiol 126:1756–1771

    Article  PubMed  CAS  Google Scholar 

  127. Wang Q, Wang Z, Tian Y et al (2018) Inhibition of astrocyte connexin 43 channels facilitates the differentiation of oligodendrocyte precursor cells under hypoxic conditions in vitro. J Mol Neurosci 64:591–600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Li M, Xia M, Chen W et al (2020) Lithium treatment mitigates white matter injury after intracerebral hemorrhage through brain-derived neurotrophic factor signaling in mice. Transl Res 217:61–74

    Article  PubMed  CAS  Google Scholar 

  129. Mattingly Z, Chetty S (2023) Generation of oligodendrocytes from human pluripotent and embryonic stem cells. Methods Mol Biol 2683:89–101

    Article  PubMed  CAS  Google Scholar 

  130. Roll L, Eysel UT, Faissner A (2020) Laser lesion in the mouse visual cortex induces a stem cell niche-like extracellular matrix, produced by immature astrocytes. Front Cell Neurosci 14:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chen M, Ingle L, Plautz EJ et al (2022) LZK-dependent stimulation of astrocyte reactivity promotes corticospinal axon sprouting. Front Cell Neurosci 16:969261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Wang LL, Serrano C, Zhong X, Ma S, Zou Y, Zhang CL (2021) Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184(5465–5481):e5416

    Google Scholar 

  133. Ding Z, Dai C, Zhong L et al (2021) Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury. Biomed Pharmacother 134:111168

    Article  PubMed  CAS  Google Scholar 

  134. Kaminski N, Koster C, Mouloud Y et al (2020) Mesenchymal stromal cell-derived extracellular vesicles reduce neuroinflammation, promote neural cell proliferation and improve oligodendrocyte maturation in neonatal hypoxic-ischemic brain injury. Front Cell Neurosci 14:601176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Chang J, Qian Z, Wang B et al (2023) Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun Signal 21:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Au NPB, Ma CHE (2022) Neuroinflammation, microglia and implications for retinal ganglion cell survival and axon regeneration in traumatic optic neuropathy. Front Immunol 13:860070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Li Y, Liu Z, Song Y et al (2022) M2 microglia-derived extracellular vesicles promote white matter repair and functional recovery via miR-23a-5p after cerebral ischemia in mice. Theranostics 12:3553–3573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. He Y, An J, Yin JJ et al (2019) Ethyl pyruvate enhances spontaneous remyelination by targeting microglia phagocytosis. Int Immunopharmacol 77:105929

    Article  PubMed  CAS  Google Scholar 

  139. Naruse M, Shibasaki K, Shimauchi-Ohtaki H, Ishizaki Y (2018) Microglial activation induces generation of oligodendrocyte progenitor cells from the subventricular zone after focal demyelination in the corpus callosum. Dev Neurosci 40:54–63

    Article  PubMed  CAS  Google Scholar 

  140. Chai Z, Ma T, Li Y et al (2023) Inhibition of inflammatory factor TNF-alpha by ferrostatin-1 in microglia regulates necroptosis of oligodendrocyte precursor cells. NeuroReport 34:583–591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Shinozaki Y, Shibata K, Yoshida K et al (2017) Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y(1) receptor downregulation. Cell Rep 19:1151–1164

    Article  PubMed  CAS  Google Scholar 

  142. Wang L, Yang JW, Lin LT et al (2020) Acupuncture attenuates inflammation in microglia of vascular dementia rats by inhibiting miR-93-mediated TLR4/MyD88/NF-kappaB signaling pathway. Oxid Med Cell Longev 2020:8253904

    PubMed  PubMed Central  Google Scholar 

  143. Liu Z, Yao X, Jiang W et al (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-kappaB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 17:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Nong X, Lan Y (2018) Picroside II attenuates CCI-induced neuropathic pain in rats by inhibiting spinal reactive astrocyte-mediated neuroinflammation through the NF-kappaB pathway. Neurochem Res 43:1058–1066

    Article  PubMed  CAS  Google Scholar 

  145. Zhang Z, Qin P, Deng Y et al (2018) The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J Neuroinflammation 15:206

    Article  PubMed  PubMed Central  Google Scholar 

  146. Deng YL, Ma YL, Zhang ZL et al (2018) Astrocytic N-Myc downstream-regulated gene-2 is involved in nuclear transcription factor kappaB-mediated inflammation induced by global cerebral ischemia. Anesthesiology 128:574–586

    Article  PubMed  CAS  Google Scholar 

  147. Zhao H, Chen Z, Xie LJ, Liu GF (2018) Suppression of TLR4/NF-kappaB signaling pathway improves cerebral ischemia-reperfusion injury in rats. Mol Neurobiol 55:4311–4319

    Article  PubMed  CAS  Google Scholar 

  148. Von Kugelgen I (2023) Pharmacological characterization of P2Y receptor subtypes - an update. Purinergic Signal: Early Access

  149. Fang Y, Ding X, Zhang Y et al (2022) Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HT(2B)R/beta-arrestin2 pathway. J Neuroinflammation 19:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Sun M, You H, Hu X et al (2023) Microglia-astrocyte interaction in neural development and neural pathogenesis. Cells 12:1942

  151. Liu CW, Wang EY, Wang HL et al (2022) Blood-brain barrier disruption in preclinical mouse models of stroke can be an experimental artifact caused by craniectomy. eNeuro 9:1–12

  152. Sladojevic N, Stamatovic SM, Johnson AM et al (2019) Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J Neurosci 39:743–757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Pulous FE, Grimsley-Myers CM, Kansal S, Kowalczyk AP, Petrich BG (2019) Talin-dependent integrin activation regulates VE-cadherin localization and endothelial cell barrier function. Circ Res 124:891–903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Sucha P, Hermanova Z, Chmelova M et al (2022) The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 16:1054919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Swissa E, Serlin Y, Vazana U, Prager O, Friedman A (2019) Blood-brain barrier dysfunction in status epileptics: mechanisms and role in epileptogenesis. Epilepsy Behav 101:106285

    Article  PubMed  Google Scholar 

  156. Clausen BH, Wirenfeldt M, Hogedal SS et al (2020) Characterization of the TNF and IL-1 systems in human brain and blood after ischemic stroke. Acta Neuropathol Commun 8:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Murata Y, Sugimoto K, Yang C et al (2020) Activated microglia-derived macrophage-like cells exacerbate brain edema after ischemic stroke correlate with astrocytic expression of aquaporin-4 and interleukin-1 alpha release. Neurochem Int 140:104848

    Article  PubMed  CAS  Google Scholar 

  158. Kangwantas K, Pinteaux E, Penny J (2016) The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 13:25

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yu X, Wang Y, Qiu H et al (2018) AEG-1 contributes to metastasis in hypoxia-related ovarian cancer by modulating the HIF-1alpha/NF-kappaB/VEGF pathway. Biomed Res Int 2018:3145689

    Article  PubMed  PubMed Central  Google Scholar 

  160. Xing G, Zhao T, Zhang X et al (2020) Astrocytic sonic hedgehog alleviates intracerebral hemorrhagic brain injury via modulation of blood-brain barrier integrity. Front Cell Neurosci 14:575690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Ding XW, Sun X, Shen XF et al (2019) Propofol attenuates TNF-alpha-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca(2+)/CAMK II/ERK/NF-kappaB signaling pathway. Acta Pharmacol Sin 40:1303–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Bai M, Sun R, Cao B, Feng J, Wang J (2023) Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci Ther 29:3693–3712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors acknowledge operating grant support from Natural Science Foundation of Colleges and Universities in Anhui Province in 2023 (Nos. 2023AH052541 and 2023AH050672).

Author information

Authors and Affiliations

Authors

Contributions

WL prepared figures and drafted the manuscript; JW edited and revised the manuscript.

Corresponding author

Correspondence to Jiyue Wen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Wen, J. Crosstalk Among Glial Cells in the Blood–Brain Barrier Injury After Ischemic Stroke. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03939-6

Keywords

Navigation