Skip to main content
Log in

The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Early investigations of the neuronal actin filament cytoskeleton gave rise to the notion that, although growth cones exhibit high levels of actin filaments, the axon shaft exhibits low levels of actin filaments. With the development of new tools and imaging techniques, the axonal actin filament cytoskeleton has undergone a renaissance and is now an active field of research. This article reviews the current state of knowledge about the actin cytoskeleton of the axon shaft. The best understood forms of actin filament organization along axons are axonal actin patches and a submembranous system of rings that endow the axon with protrusive competency and structural integrity, respectively. Additional forms of actin filament organization along the axon have also been described and their roles are being elucidated. Extracellular signals regulate the axonal actin filament cytoskeleton and our understanding of the signaling mechanisms involved is being elaborated. Finally, recent years have seen advances in our perspective on how the axonal actin cytoskeleton is impacted by, and contributes to, axon injury and degeneration. The work to date has opened new venues and future research will undoubtedly continue to provide a richer understanding of the axonal actin filament cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

None available as this is a review article.

Abbreviations

ADF:

Actin depolymerizing factor

AIS:

Axon initial segment

AFB:

Actin filament bundles

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

CSPGs:

Chondroitin sulfate proteoglycans

FMN2:

Formin-2

NGF:

Nerve growth factor

PI3K:

Phosphoinosite-3 kinase

PI(3,4,5)P3/PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PTEN:

Phosphatase and tensin homolog

PMS:

Periodic membrane skeleton

ROCK:

RhoA-kinase

Sarm1:

Sterile alpha and TIR motif containing 1

Sema3A:

Semaphorin 3A

WAVE1:

WASP-family verpolin homologous protein 1

References

  1. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3(3):a001800

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoersting AK, Schmucker D (2021) Axonal branch patterning and neuronal shape diversity: roles in developmental circuit assembly. Curr Opin Neurobiol 66:158

    Article  CAS  PubMed  Google Scholar 

  3. Onifer SM, Smith GM, Fouad K (2011) Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics 8(2):283

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewis TL Jr, Courchet J, Polleux F (2013) Cell biology in neuroscience: cellular and molecular mechanisms underlying axon formation, growth, and branching. J Cell Biol 202(6):837–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pollard TD (2017) What we know and do not know about actin. Handb Exp Pharmacol 235:331

    Article  CAS  PubMed  Google Scholar 

  6. Pollard TD (2016) Actin and actin-binding proteins. Cold Spring Harb Perspect Biol 8:a018226

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roy S (2020) Finding order in slow axonal transport. Curr Opin Neurobiol 63:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL (2021) The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 22(2):77

    Article  CAS  PubMed  Google Scholar 

  9. Ketschek AR, Jones SL, Gallo G (2007) Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions. Dev Neurobiol 67(10):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turney SG, Bridgman PC (2005) Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat Neurosci 8(6):717

    Article  CAS  PubMed  Google Scholar 

  11. Abosch A, Lagenaur C (1993) Sensitivity of neurite outgrowth to microfilament disruption varies with adhesion molecule substrate. J Neurobiol 24(3):344

    Article  CAS  PubMed  Google Scholar 

  12. Gentile JE, Carrizales MG, Koleske AJ (2022) Control of synapse structure and function by actin and its regulators. Cells 11(4):603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fath KR, Lasek RJ (1988) Two classes of actin microfilaments are associated with the inner cytoskeleton of axons. J Cell Biol 107(2):613

    Article  CAS  PubMed  Google Scholar 

  14. Chang CM, Goldman RD (1973) The localization of actin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding. J Cell Biol 57(3):867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. LeBeux YJ, Willemot J (1975) An ultrastructural study of the microfilaments in rat brain by means of heavy meromyosin labeling. I. The perikaryon, the dendrites and the axon. Cell Tissue Res 160(1):1

    CAS  PubMed  Google Scholar 

  16. Sanger JW (1975) Intracellular localization of actin with fluorescently labelled heavy meromyosin. Cell Tissue Res 161(4):431

    Article  CAS  PubMed  Google Scholar 

  17. Marchisio PC, Osborn M, Weber K (1978) Changes in intracellular organization of tubulin and actin in N-18 neuroblastoma cells during the process of axon extension induced by serum deprivation. Brain Res 155(2):229

    Article  CAS  PubMed  Google Scholar 

  18. Sotelo J, Toh BH, Yildiz A, Osung O, Holborow EJ (1979) Immunofluorescence demonstrates the distribution of actin, myosin and intermediate filaments in cultured neuroblastoma cells. Neuropathol Appl Neurobiol 5(6):499

    Article  CAS  PubMed  Google Scholar 

  19. Spooner BS, Holladay CR (1981) Distribution of tubulin and actin in neurites and growth cones of differentiating nerve cells. Cell Motil 1(2):167

    Article  CAS  PubMed  Google Scholar 

  20. Goldman JE (1983) Immunocytochemical studies of actin localization in the central nervous system. J Neurosci 3(10):1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morris JR, Lasek RJ (1984) Monomer-polymer equilibria in the axon: direct measurement of tubulin and actin as polymer and monomer in axoplasm. J Cell Biol 98(6):2064

    Article  CAS  PubMed  Google Scholar 

  22. Marsh L, Letourneau PC (1984) Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol 99(6):2041

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi T, Tsukita S, Tsukita S, Yamamoto Y, Matsumoto G (1986) Subaxolemmal cytoskeleton in squid giant axon. I. Biochemical analysis of microtubules, microfilaments, and their associated high-molecular-weight proteins. J Cell Biol. 102(5):1699

    Article  CAS  PubMed  Google Scholar 

  24. Papasozomenos SC, Payne MR (1986) Actin immunoreactivity localizes with segregated microtubules and membraneous organelles and in the subaxolemmal region in the beta, beta′-iminodipropionitrile axon. J Neurosci 6(12):3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagele RG, Kosciuk MC, Hunter ET, Bush KT, Lee H (1988) Immunoelectron microscopic localization of actin in neurites of cultured embryonic chick dorsal root ganglia: actin is a component of granular, microtubule-associated crossbridges. Brain Res 474(2):279

    Article  CAS  PubMed  Google Scholar 

  26. Merino F, Pospich S, Raunser S (2020) Towards a structural understanding of the remodeling of the actin cytoskeleton. Semin Cell Dev Biol 102:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118):452

    Article  CAS  PubMed  Google Scholar 

  28. Vassilopoulos S, Gibaud S, Jimenez A, Caillol G, Leterrier C (2019) Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. Nat Commun 10(1):5803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones SL, Korobova F, Svitkina T (2014) Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. J Cell Biol 205(1):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong G, He J, Zhou R, Lorenzo D, Babcock HP, Bennett V, Zhuang X (2014) Developmental mechanism of the periodic membrane skeleton in axons. Elife 3:e04581

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qu Y, Hahn I, Webb SE, Pearce SP, Prokop A (2017) Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell 28(2):296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lorenzo DN, Edwards RJ, Slavutsky AL (2023) Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 24(4):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hammarlund M, Jorgensen EM, Bastiani MJ (2007) Axons break in animals lacking beta-spectrin. J Cell Biol 176(3):269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leite SC, Sampaio P, Sousa VF, Nogueira-Rodrigues J, Pinto-Costa R, Peters LL, Brites P, Sousa MM (2016) The actin-binding protein α-adducin is required for maintaining axon diameter. Cell Rep 15(3):490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuoka Y, Li X, Bennett V (2000) Adducin: structure, function and regulation. Cell Mol Life Sci 57(6):884

    Article  CAS  PubMed  Google Scholar 

  36. Zhou R, Han B, Nowak R, Lu Y, Heller E, Xia C, Chishti AH, Fowler VM et al (2022) Proteomic and functional analyses of the periodic membrane skeleton in neurons. Nat Commun 13(1):3196

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hauser M, Yan R, Li W, Repina NA, Schaffer DV, Xu K (2018) The spectrin-actin-based periodic cytoskeleton as a conserved nanoscale scaffold and ruler of the neural stem cell lineage. Cell Rep 24(6):1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lavoie-Cardinal F, Bilodeau A, Lemieux M, Gardner MA, Wiesner T, Laramée G, Gagné C, De Koninck P (2020) Neuronal activity remodels the F-actin based submembrane lattice in dendrites but not axons of hippocampal neurons. Sci Rep 10(1):11960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40(2):209

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann M, Biller L, Michel U, Bähr M, Koch JC (2022) Cytoskeletal assembly in axonal outgrowth and regeneration analyzed on the nanoscale. Sci Rep 12(1):14387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gomez TM, Snow DM, Letourneau PC (1995) Characterization of spontaneous calcium transients in nerve growth cones and their effect on growth cone migration. Neuron 14(6):1233

    Article  CAS  PubMed  Google Scholar 

  42. Huang CY, Rasband MN (2018) Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 1420(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hedstrom KL, Ogawa Y, Rasband MN (2008) J AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. Cell Biol 183(4):635

    Article  CAS  Google Scholar 

  44. D’Este E, Kamin D, Göttfert F, El-Hady A, Hell SW (2015) STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep 10(8):1246

    Article  PubMed  Google Scholar 

  45. Berger SL, Leo-Macias A, Yuen S, Khatri L, Pfennig S, Zhang Y, Agullo-Pascual E, Caillol G et al (2018) Localized myosin II activity regulates assembly and plasticity of the axon initial segment. Neuron 97(3):555.e6

    Article  Google Scholar 

  46. Wang T, Li W, Martin S, Papadopulos A, Joensuu M, Liu C, Jiang A, Shamsollahi G et al (2020) Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. J Cell Biol 219(5):e201902001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang W, Ciorraga M, Mendez P, Retana D, Boumedine-Guignon N, Achón B, Russier M, Debanne D et al (2021) Formin activity and mDia1 contribute to maintain axon initial segment composition and structure. Mol Neurobiol 58(12):6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zimmermann D, Homa KE, Hocky GM, Pollard LW, De La Cruz EM, Voth GA, Trybus KM, Kovar DR (2017) Mechanoregulated inhibition of formin facilitates contractile actomyosin ring assembly. Nat Commun 8(1):703

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thiyagarajan S, Wang S, O’Shaughnessy B (2017) A node organization in the actomyosin contractile ring generates tension and aids stability. Mol Biol Cell 28(23):3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gallo G (2013) Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. Int Rev Cell Mol Biol 301:95

    Article  CAS  PubMed  Google Scholar 

  51. Lau PM, Zucker RS, Bentley D (1999) Induction of filopodia by direct local elevation of intracellular calcium ion concentration. J Cell Biol 145(6):1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gallo G, Letourneau PC (1998) Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci 18(14):5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spillane M, Ketschek A, Jones SL, Korobova F, Marsick B, Lanier L, Svitkina T, Gallo G (2011) The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev Neurobiol 71(9):747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hand RA, Khalid S, Tam E, Kolodkin AL (2015) Axon dynamics during neocortical laminar innervation. Cell Rep 12(2):172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen CH, He CW, Liao CP, Pan CL (2017) A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling. PLoS Genet 13(4):e1006720

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ketschek A, Gallo G (2010) Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 30(36):12185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brosig A, Fuchs J, Ipek F, Kroon C, Schrötter S, Vadhvani M, Polyzou A, Ledderose J et al (2019) The axonal membrane protein PRG2 inhibits PTEN and directs growth to branches. Cell Rep 29(7):2028.e8

    Article  Google Scholar 

  58. Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 5(6):1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tao K, Matsuki N, Koyama R (2014) AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon. Dev Neurobiol 74(6):557

    Article  CAS  PubMed  Google Scholar 

  60. Courchet J, Lewis TL Jr, Lee S, Courchet V, Liou DY, Aizawa S, Polleux F (2013) Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 153(7):1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Armijo-Weingart L, Ketschek A, Sainath R, Pacheco A, Smith GM, Gallo G (2019) Neurotrophins induce fission of mitochondria along embryonic sensory axons. Elife 8:e49494

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sainath R, Gallo G (2021) Bioenergetic requirements and spatiotemporal profile of nerve growth factor induced PI3K-Akt signaling along sensory axons. Front Mol Neurosci 14:726331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kundu T, Siva Das S, Sewatkar LK, Kumar DS, Nagar D, Ghose A (2022) Antagonistic activities of Fmn2 and ADF regulate axonal F-actin patch dynamics and the initiation of collateral branching. J Neurosci 42(39):7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Montaville P, Jégou A, Pernier J, Compper C, Guichard B, Mogessie B, Schuh M, Romet-Lemonne G et al (2014) Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. PLoS Biol 12:e1001795

    Article  PubMed  PubMed Central  Google Scholar 

  65. Montaville P, Kühn S, Compper C, Carlier MF (2016) Role of the C-terminal extension of formin 2 in its activation by spire protein and processive assembly of actin filaments. J Biol Chem 291:3302

    Article  CAS  PubMed  Google Scholar 

  66. Spillane M, Ketschek A, Donnelly CJ, Pacheco A, Twiss JL, Gallo G (2012) Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. J Neurosci 32(49):17671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Loudon RP, Silver LD, Yee HF Jr, Gallo G (2006) RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J Neurobiol 66(8):847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ketschek A, Spillane M, Dun XP, Hardy H, Chilton J, Gallo G (2016) Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches. Dev Neurobiol 76(10):1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dwivedy A, Gertler FB, Miller J, Holt CE, Lebrand C (2007) Ena/VASP function in retinal axons is required for terminal arborization but not pathway navigation. Development 134(11):2137–2146

    Article  CAS  PubMed  Google Scholar 

  70. Creighton BA, Afriyie S, Ajit D, Casingal CR, Voos KM, Reger J, Burch AM, Dyne E et al (2021) Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. Elife 10:e69815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen K, Yang R, Li Y, Zhou JC, Zhang M (2020) Giant ankyrin-B suppresses stochastic collateral axon branching through direct interaction with microtubules. J Cell Biol 219(8):e201910053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Radler MR, Spiliotis ET (2022) Right place, right time - spatial guidance of neuronal morphogenesis by septin GTPases. Curr Opin Neurobiol 75:102557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu J, Bai X, Bowen JR, Dolat L, Korobova F, Yu W, Baas PW, Svitkina T et al (2012) Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr Biol 22(12):1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Waller TJ, Collins CA (2022) Multifaceted roles of SARM1 in axon degeneration and signaling. Front Cell Neurosci 16:958900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ketschek A, Holland SM, Gallo G (2022) SARM1 suppresses axon branching through attenuation of axonal cytoskeletal dynamics. Front Mol Neurosci 15:726962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Watanabe K, Al-Bassam S, Miyazaki Y, Wandless TJ, Webster P, Arnold DB (2012) Networks of polarized actin filaments in the axon initial segment provide a mechanism for sorting axonal and dendritic proteins. Cell Rep 2(6):1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Balasanyan V, Watanabe K, Dempsey WP, Lewis TL Jr, Trinh LA, Arnold DB (2017) Structure and function of an actin-based filter in the proximal axon. Cell Rep 21(10):2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee BH, Bang S, Lee SR, Jeon NL, Park HY (2022) Dynamics of axonal β-actin mRNA in live hippocampal neurons. Traffic 23(10):496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van Bommel B, Konietzny A, Kobler O, Bär J, Mikhaylova M (2019) F-actin patches associated with glutamatergic synapses control positioning of dendritic lysosomes. EMBO J 38(15):e101183

    Article  PubMed  PubMed Central  Google Scholar 

  80. Abouelezz A, Stefen H, Segerstråle M, Micinski D, Minkeviciene R, Lahti L, Hardeman EC, Gunning PW et al (2020) Tropomyosin Tpm3.1 is required to maintain the structure and function of the axon initial segment. iScience 23(5):101053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mears JA, Ramachandran R (2022) Drp1 and the cytoskeleton: mechanistic nexus in mitochondrial division. Curr Opin Physiol 29:100574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu A, Kage F, Higgs HN (2021) Mff oligomerization is required for Drp1 activation and synergy with actin filaments during mitochondrial division. Mol Biol Cell 32(20):ar5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balzer CJ, Wagner AR, Helgeson LA, Nolen BJ (2019) Single-turnover activation of Arp2/3 complex by Dip1 may balance nucleation of linear versus branched actin filaments. Curr Biol 29(19):3331-3338.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wagner AR, Luan Q, Liu SL, Nolen BJ (2013) Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments Curr. Biol 23:1990

    CAS  Google Scholar 

  85. Roche FK, Marsick BM, Letourneau PC (2009) Protein synthesis in distal axons is not required for growth cone responses to guidance cues. J Neurosci 29(3):638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wong HH, Lin JQ, Ströhl F, Roque CG, Cioni JM, Cagnetta R, Turner-Bridger B, Laine RF et al (2017) RNA docking and local translation regulate site-specific axon remodeling in vivo. Neuron 95(4):852.e8

    Article  Google Scholar 

  87. Dent EW, Barnes AM, Tang F, Kalil K (2004) Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci 24(12):3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gallo G (2006) RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119:3413

    Article  CAS  PubMed  Google Scholar 

  89. Chadborn NH, Ahmed AI, Holt MR, Prinjha R, Dunn GA, Jones GE, Eickholt BJ (2006) PTEN couples Sema3A signalling to growth cone collapse. J Cell Sci 119(Pt 5):951

    Article  CAS  PubMed  Google Scholar 

  90. Lee H, McKeon RJ, Bellamkonda RV (2010) Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 107(8):3340

    Article  CAS  PubMed  Google Scholar 

  91. Starkey ML, Bartus K, Barritt AW, Bradbury EJ (2012) Chondroitinase ABC promotes compensatory sprouting of the intact corticospinal tract and recovery of forelimb function following unilateral pyramidotomy in adult mice. Eur J Neurosci 36(12):3665

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298(5596):1248

    Article  CAS  PubMed  Google Scholar 

  93. Sainath R, Ketschek A, Grandi L, Gallo G (2017) CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation. Dev Neurobiol 77(4):454

    Article  CAS  PubMed  Google Scholar 

  94. Silver L, Michael JV, Goldfinger LE, Gallo G (2014) Activation of PI3K and R-Ras signaling promotes the extension of sensory axons on inhibitory chondroitin sulfate proteoglycans. Dev Neurobiol 74(9):918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R et al (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31(40):14051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sainath R, Armijo-Weingart L, Ketscheck A, Xu Z, Li S, Gallo G (2017) Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons. Dev Neurobiol 77(12):1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kalinski AL, Kar AN, Craver J, Tosolini AP, Sleigh JN, Lee SJ, Hawthorne A, Brito-Vargas P et al (2019) Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol 218(6):1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Verburg J, Hollenbeck PJ (2008) Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 28(33):8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9(10):1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Piper M, Salih S, Weinl C, Holt CE, Harris WA (2005) Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat Neurosci 8(2):179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14(14):1272

    Article  CAS  PubMed  Google Scholar 

  102. Brown JA, Bridgman PC (2009) Disruption of the cytoskeleton during Semaphorin 3A induced growth cone collapse correlates with differences in actin organization and associated binding proteins. Dev Neurobiol 69(10):633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Orlova I, Silver L, Gallo G (2007) Regulation of actomyosin contractility by PI3K in sensory axons. Dev Neurobiol 67(14):1843

    Article  CAS  PubMed  Google Scholar 

  104. Roland AB, Ricobaraza A, Carrel D, Jordan BM, Rico F, Simon A, Humbert-Claude M, Ferrier J et al (2014) Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. Elife 3:e03159

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ketschek A, Sainath R, Holland S, Gallo G (2021) The axonal glycolytic pathway contributes to sensory axon extension and growth cone dynamics. J Neurosci 41(31):6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruthel G, Banker G (1998) Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: a novel form of axonal transport? Cell Motil Cytoskeleton 40(2):160

    Article  CAS  PubMed  Google Scholar 

  107. Flynn KC, Pak CW, Shaw AE, Bradke F, Bamburg JR (2009) Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev Neurobiol 69(12):761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ruthel G, Banker G (1999) Role of moving growth cone-like “wave” structures in the outgrowth of cultured hippocampal axons and dendrites. J Neurobiol 39(1):97

    Article  CAS  PubMed  Google Scholar 

  109. Mortal S, Iseppon F, Perissinotto A, D’Este E, Cojoc D, Napolitano LMR, Torre V (2017) Actin waves do not boost neurite outgrowth in the early stages of neuron maturation. Front Cell Neurosci 11:402

    Article  PubMed  PubMed Central  Google Scholar 

  110. Iuliano O, Yoshimura A, Prospéri MT, Martin R, Knölker HJ, Coudrier E (2018) Myosin 1b promotes axon formation by regulating actin wave propagation and growth cone dynamics. J Cell Biol 217(6):2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tint I, Jean D, Baas PW, Black MM (2009) Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J Neurosci 29(35):10995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Difato F, Tsushima H, Pesce M, Benfenati F, Blau A, Chieregatti E (2011) The formation of actin waves during regeneration after axonal lesion is enhanced by BDNF. Sci Rep 1:183

    Article  PubMed  PubMed Central  Google Scholar 

  113. Woo D, Seo Y, Jung H, Kim S, Kim N, Park SM, Lee H, Lee S et al (2019) Locally activating TrkB receptor generates actin waves and specifies axonal fate. Cell Chem Biol 26(12):1652.e4

    Article  Google Scholar 

  114. Ganguly A, Tang Y, Wang L, Ladt K, Loi J, Dargent B, Leterrier C, Roy S (2015) A dynamic formin-dependent deep F-actin network in axons. J Cell Biol 210(3):401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Phillips JK, Sherman SA, Cotton KY, Heddleston JM, Taylor AB, Finan JD (2019) Characterization of neurite dystrophy after trauma by high speed structured illumination microscopy and lattice light sheet microscopy. J Neurosci Methods 312:154

    Article  PubMed  Google Scholar 

  116. Chakrabarty N, Dubey P, Tang Y, Ganguly A, Ladt K, Leterrier C, Jung P, Roy S (2019) Processive flow by biased polymerization mediates the slow axonal transport of actin. J Cell Biol 218(1):112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmidt EF, Strittmatter SM (2007) The CRMP family of proteins and their role in Sema3A signaling. Adv Exp Med Biol 600:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gallo G (2004) Myosin II activity is required for severing-induced axon retraction in vitro. Exp Neurol 189(1):112

    Article  CAS  PubMed  Google Scholar 

  119. Shao X, You R, Hui TH, Fang C, Gong Z, Yan Z, Chang RCC, Shenoy VB et al (2019) Tension- and adhesion-regulated retraction of injured axons. Biophys J 117(2):193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mutalik SP, Joseph J, Pullarkat PA, Ghose A (2018) Cytoskeletal mechanisms of axonal contractility. Biophys J 115(4):713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tofangchi A, Fan A, Saif MTA (2016) Mechanism of axonal contractility in embryonic drosophila motor neurons in vivo. Biophys J 111(7):1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Garland P, Broom LJ, Quraishe S, Dalton PD, Skipp P, Newman TA, Perry VH (2012) Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton. PLoS ONE 7(10):e47552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kubo T, Endo M, Hata K, Taniguchi J, Kitajo K, Tomura S, Yamaguchi A, Mueller BK et al (2008) Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem 105(1):113

    Article  CAS  PubMed  Google Scholar 

  124. Unsain N, Bordenave MD, Martinez GF, Jalil S, von Bilderling C, Barabas FM, Masullo LA, Johnstone AD et al (2018) Remodeling of the actin/spectrin membrane-associated periodic skeleton, growth cone collapse and F-actin decrease during axonal degeneration. Sci Rep 8(1):3007

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sainath R, Gallo G (2015) The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Dev Neurobiol 75(7):757

    Article  CAS  PubMed  Google Scholar 

  126. Koch JC, Tönges L, Barski E, Michel U, Bähr M, Lingor P (2014) ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis 5(5):e1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Calabrese B, Jones SL, Shiraishi-Yamaguchi Y, Lingelbach M, Manor U, Svitkina TM, Higgs HN, Shih AY et al (2022) INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury. Nat Commun 13(1):6037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schafer DP, Jha S, Liu F, Akella T, McCullough LD, Rasband MN (2009) Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 29(42):13242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Baalman KL, Cotton RJ, Rasband SN, Rasband MN (2013) J Blast wave exposure impairs memory and decreases axon initial segment length. Neurotrauma 30(9):741

    Article  Google Scholar 

  130. Hinman JD, Rasband MN, Carmichael ST (2013) Remodeling of the axon initial segment after focal cortical and white matter stroke. Stroke 44(1):182

    Article  PubMed  Google Scholar 

  131. Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20(4):187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB (2021) Cofilin and actin dynamics: multiple modes of regulation and their impacts in neuronal development and degeneration. Cells 10(10):2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bamburg JR, Bernstein BW (2016) Actin dynamics and cofilin-actin rods in Alzheimer disease. Cytoskeleton (Hoboken) 73(9):477

    Article  CAS  PubMed  Google Scholar 

  134. Bamburg JR, Bernstein BW, Davis RC, Flynn KC, Goldsbury C, Jensen JR, Maloney MT, Marsden IT et al (2010) ADF/Cofilin-actin rods in neurodegenerative diseases. Curr Alzheimer Res 7(3):241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maloney MT, Bamburg JR (2007) Cofilin-mediated neurodegeneration in Alzheimer’s disease and other amyloidopathies. Mol Neurobiol 35(1):21

    Article  CAS  PubMed  Google Scholar 

  136. Hirano A (1994) Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 20(1):3–11

    Article  CAS  PubMed  Google Scholar 

  137. Galloway PG, Perry G, Gambetti P (1987) Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 46(2):185–199

    Article  CAS  PubMed  Google Scholar 

  138. Atsumi T, Yamamura Y, Sato T, Ikuta F (1980) Hirano bodies in the axon of peripheral nerves in a case with progressive external ophthalmoplegia with multisystemic involvements. Acta Neuropathol 49(2):95–100

    Article  CAS  PubMed  Google Scholar 

  139. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod RJ, Dieterich DC, Blum R et al (2017) Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol 216(3):793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Donnelly CJ, Park M, Spillane M, Yoo S, Pacheco A, Gomes C, Vuppalanchi D, McDonald M et al (2013) Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci 33(8):3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gan WB, Kwon E, Feng G, Sanes JR, Lichtman JW (2003) Synaptic dynamism measured over minutes to months: age-dependent decline in an autonomic ganglion. Nat Neurosci 6(9):956–960

    Article  CAS  PubMed  Google Scholar 

  142. Iyengar S, Bottjer SW (2002) Development of individual axon arbors in a thalamocortical circuit necessary for song learning in zebra finches. J Neurosci 22(3):901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ishida Y, Shirokawa T, Komatsu Y, Isobe K (2001) Changes in cortical noradrenergic axon terminals of locus coeruleus neurons in aged F344 rats. Neurosci Lett 307(3):197

    Article  CAS  PubMed  Google Scholar 

  144. Shirokawa T, Ishida Y, Isobe KI (2000) Age-dependent changes in axonal branching of single locus coeruleus neurons projecting to two different terminal fields. J Neurophysiol 84(2):1120

    Article  CAS  PubMed  Google Scholar 

  145. Pospichal MW, Florence SL, Kaas JH (1994) The postnatal development of geniculocortical axon arbors in owl monkeys. Vis Neurosci 11(1):71

    Article  CAS  PubMed  Google Scholar 

  146. Cowen T (1993) Ageing in the autonomic nervous system: a result of nerve-target interactions? A review. Mech Ageing Dev 68(1–3):163

    Article  CAS  PubMed  Google Scholar 

  147. Kuang RZ, Kalil K (1990) Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord. J Comp Neurol 302(3):461

    Article  CAS  PubMed  Google Scholar 

  148. Parekh R, Ascoli GA (2015) Quantitative investigations of axonal and dendritic arbors: development, structure, function, and pathology. Neuroscientist 21(3):241

    Article  CAS  PubMed  Google Scholar 

  149. Chen CH, Chen YC, Jiang HC, Chen CK, Pan CL (2013) Neuronal aging: learning from C. elegans. J Mol Signal 8(1):14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by NIH NINDS R56NS128049 to GG.

Author information

Authors and Affiliations

Authors

Contributions

GG wrote the manuscript, reviewed the literature, and prepared the figures.

Corresponding author

Correspondence to Gianluca Gallo.

Ethics declarations

Ethics Approval

Not applicable. This is a review article.

Consent to Participate

Not applicable. This is a review article.

Consent for Publication

Not applicable. This is a review article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

The axonal actin cytoskeleton serves protrusive and contractile functions.

The axonal actin cytoskeleton forms a ring system to support the plasma membrane.

The axonal actin cytoskeleton protects from axon degeneration.

The axonal actin cytoskeleton is regulated by axonal endomembrane compartments.

The axonal actin cytoskeleton reorganizes during injury and degeneration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, G. The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-023-03879-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03879-7

Keywords

Navigation