Skip to main content

Advertisement

Log in

Deferoxamine Induces Autophagy Following Traumatic Brain Injury via TREM2 on Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous studies have indicated that iron disorder, inflammation, and autophagy play an important role in traumatic brain injury (TBI). The triggering receptor expressed on myeloid cells 2 (TREM2), an immunoglobulin superfamily transmembrane receptor, is involved in inflammation. However, the role of TREM2 in modulating the microglia response in TBI has been rarely investigated. The present study aimed to investigate if the iron chelator deferoxamine (DFO) could ameliorate TBI through autophagy mediated by the TREM2. TBI was developed by the controlled cortical impact (CCI) mouse model and stretching of individual primary cortical microglia taken from the tissue of the rat brain. DFO was intraperitoneally used for intervention. Western blotting assay, qRT-PCR, TUNEL staining, immunofluorescence staining, confocal microscopy analysis, transmission electron microscopy, H&E staining, brain water content measurement, and the neurobehavioral assessments were performed. TREM2 expression was up-regulated in cortex of TBI mice model and in microglia stretching model, which was attenuated by DFO. After the mice were subjected to CCI, DFO treatment significantly up-regulated the protein levels of autophagy compared with the TBI group at 3 days and caused an increase of autophagic vacuoles. Treatment with DFO reduced TBI-induced cell apoptosis, cerebral edema, neuroinflammation, and motor function impairment in mice, at least partly via the mTOR signaling pathway that facilitates the TREM2 activity. The results indicated that the maintenance of iron homeostasis by DFO plays neuroprotection by modulating the inflammatory response to TBI through TREM2-mediated autophagy. This study suggested that TREM2-mediated autophagy might be a potential target for therapeutic intervention in TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Abbreviations

CNS:

Central nervous system

CCI:

Controlled cortical impact

DPI:

Days post-injury

DFO:

Deferoxamine

Iba-1:

Ionized calcium-binding adaptor molecule 1

IL-1β:

Interleukin-1 beta

IL-4:

Interleukin-4

IL-6:

Interleukin-6

mTOR:

Mammalian target of rapamycin

mNSS:

Modified neurological severity scores

qRT-PCR:

Quantitative real-time polymerase chain reaction

SI:

Stretch injury

TUNEL:

TdT-mediated dUTP nick end labeling

TBI:

Traumatic brain injury

TREM2:

Triggering receptor expressed on myeloid cells 2

TNF-α:

Tumor necrosis factor-alpha

References

  1. Wilson L, Stewart W, Dams-O’Connor K, Diaz-Arrastia R, Horton L, Menon DK, Polinder S (2017) The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol 16(10):813–825. https://doi.org/10.1016/s1474-4422(17)30279-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K (2018) Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurol 75(9):1055–1061. https://doi.org/10.1001/jamaneurol.2018.0815

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jiang JY, Gao GY, Feng JF, Mao Q, Chen LG, Yang XF, Liu JF, Wang YH et al (2019) Traumatic brain injury in China. Lancet Neurol 18(3):286–295. https://doi.org/10.1016/s1474-4422(18)30469-1

    Article  PubMed  Google Scholar 

  4. Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H (2016) Traumatic brain injuries. Nat Rev Dis Primers 2:16084. https://doi.org/10.1038/nrdp.2016.84

    Article  PubMed  Google Scholar 

  5. Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM (2019) The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 137(5):731–755. https://doi.org/10.1007/s00401-018-1944-6

    Article  PubMed  Google Scholar 

  6. Corps KN, Roth TL, McGavern DB (2015) Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 72(3):355–362. https://doi.org/10.1001/jamaneurol.2014.3558

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu J, Lipinski MM (2019) Autophagy in neurotrauma: good, bad, or dysregulated. Cells 8(7). https://doi.org/10.3390/cells8070693

  8. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170(4):649-663.e613. https://doi.org/10.1016/j.cell.2017.07.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053

    Article  PubMed  CAS  Google Scholar 

  10. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383. https://doi.org/10.1002/ana.22455

    Article  PubMed  Google Scholar 

  11. Chen X, Wang H, Zhou M, Li X, Fang Z, Gao H, Li Y, Hu W (2018) Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: involvement of autophagy and the Nrf2/ARE signaling pathway. Front Mol Neurosci 11:117. https://doi.org/10.3389/fnmol.2018.00117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ulland TK, Colonna M (2018) TREM2 - a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14(11):667–675. https://doi.org/10.1038/s41582-018-0072-1

    Article  PubMed  CAS  Google Scholar 

  13. Deczkowska A, Weiner A, Amit I (2020) The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway. Cell 181(6):1207–1217. https://doi.org/10.1016/j.cell.2020.05.003

    Article  PubMed  CAS  Google Scholar 

  14. Saber M, Kokiko-Cochran O, Puntambekar SS, Lathia JD, Lamb BT (2017) Triggering receptor expressed on myeloid cells 2 deficiency alters acute macrophage distribution and improves recovery after traumatic brain injury. J Neurotrauma 34(2):423–435. https://doi.org/10.1089/neu.2016.4401

    Article  PubMed  Google Scholar 

  15. Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S (2020) Blood-related toxicity after traumatic brain injury: potential targets for neuroprotection. Mol Neurobiol 57(1):159–178. https://doi.org/10.1007/s12035-019-01766-8

    Article  PubMed  CAS  Google Scholar 

  16. Saletti PG, Ali I, Casillas-Espinosa PM, Semple BD, Lisgaras CP, Moshé SL, Galanopoulou AS (2019) In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol Dis 123:86–99. https://doi.org/10.1016/j.nbd.2018.06.017

    Article  PubMed  Google Scholar 

  17. Wu Y, Li X, Xie W, Jankovic J, Le W, Pan T (2010) Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells. Neurochem Int 57(3):198–205. https://doi.org/10.1016/j.neuint.2010.05.008

    Article  PubMed  CAS  Google Scholar 

  18. Cappellini MD, Pattoneri P (2009) Oral iron chelators. Annu Rev Med 60:25–38. https://doi.org/10.1146/annurev.med.60.041807.123243

    Article  PubMed  CAS  Google Scholar 

  19. Wang K, Jing Y, Xu C, Zhao J, Gong Q, Chen S (2020) HIF-1α and VEGF are involved in deferoxamine-ameliorated traumatic brain injury. J Surg Res 246:419–426. https://doi.org/10.1016/j.jss.2019.09.023

    Article  PubMed  CAS  Google Scholar 

  20. Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, Brennan KC (2020) Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Invest 130(11):6005–6020. https://doi.org/10.1172/jci134793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tarudji AW, Gee CC, Romereim SM, Convertine AJ, Kievit FM (2021) Antioxidant thioether core-crosslinked nanoparticles prevent the bilateral spread of secondary injury to protect spatial learning and memory in a controlled cortical impact mouse model of traumatic brain injury. Biomaterials 272:120766. https://doi.org/10.1016/j.biomaterials.2021.120766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G (2004) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 100(4):672–678. https://doi.org/10.3171/jns.2004.100.4.0672

    Article  PubMed  CAS  Google Scholar 

  23. Zhang L, Hu R, Li M, Li F, Meng H, Zhu G, Lin J, Feng H (2013) Deferoxamine attenuates iron-induced long-term neurotoxicity in rats with traumatic brain injury. Neurol Sci 34(5):639–645. https://doi.org/10.1007/s10072-012-1090-1

    Article  PubMed  Google Scholar 

  24. Siao CJ, Tsirka SE (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 22(9):3352–3358. https://doi.org/10.1523/jneurosci.22-09-03352.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rathnasamy G, Ling EA, Kaur C (2011) Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci 31(49):17982–17995. https://doi.org/10.1523/jneurosci.2250-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32(11):2682–2688. https://doi.org/10.1161/hs1101.098367

    Article  PubMed  CAS  Google Scholar 

  27. Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, Shao A, Shi L et al (2021) Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 18(1):2. https://doi.org/10.1186/s12974-020-02041-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, Khan N, Kumar A, Thom SR et al (2017) Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 14(1):47. https://doi.org/10.1186/s12974-017-0819-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Vázquez-Rosa E, Shin MK, Dhar M, Chaubey K, Cintrón-Pérez CJ, Tang X, Liao X, Miller E et al (2020) P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc Natl Acad Sci U S A 117(44):27667–27675. https://doi.org/10.1073/pnas.2010430117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mu X, He H, Wang J, Long W, Li Q, Liu H, Gao Y, Ouyang L et al (2019) Carbogenic nanozyme with ultrahigh reactive nitrogen species selectivity for traumatic brain injury. Nano Lett 19(7):4527–4534. https://doi.org/10.1021/acs.nanolett.9b01333

    Article  PubMed  CAS  Google Scholar 

  31. Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275 Pt 3 (0 3):316–327. https://doi.org/10.1016/j.expneurol.2015.08.018

  32. Perugorria MJ, Esparza-Baquer A, Oakley F, Labiano I, Korosec A, Jais A, Mann J, Tiniakos D et al (2019) Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut 68(3):533–546. https://doi.org/10.1136/gutjnl-2017-314107

    Article  PubMed  CAS  Google Scholar 

  33. Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177(6):3520–3524. https://doi.org/10.4049/jimmunol.177.6.3520

    Article  PubMed  CAS  Google Scholar 

  34. Zhao J, Xu C, Cao H, Zhang L, Wang X, Chen S (2019) Identification of target genes in neuroinflammation and neurodegeneration after traumatic brain injury in rats. PeerJ 7:e8324. https://doi.org/10.7717/peerj.8324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Viscomi MT, D’Amelio M, Cavallucci V, Latini L, Bisicchia E, Nazio F, Fanelli F, Maccarrone M et al (2012) Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy 8(2):222–235. https://doi.org/10.4161/auto.8.2.18599

    Article  PubMed  CAS  Google Scholar 

  36. Zhang F, Dong H, Lv T, Jin K, Jin Y, Zhang X, Jiang J (2018) Moderate hypothermia inhibits microglial activation after traumatic brain injury by modulating autophagy/apoptosis and the MyD88-dependent TLR4 signaling pathway. J Neuroinflammation 15(1):273. https://doi.org/10.1186/s12974-018-1315-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18(9). https://doi.org/10.3390/ijms18091865

  38. Matsuzawa-Ishimoto Y, Hwang S, Cadwell K (2018) Autophagy and inflammation. Annu Rev Immunol 36:73–101. https://doi.org/10.1146/annurev-immunol-042617-053253

    Article  PubMed  CAS  Google Scholar 

  39. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26(1):86–93. https://doi.org/10.1016/j.nbd.2006.12.003

    Article  PubMed  CAS  Google Scholar 

  40. Cheng H, Wang N, Ma X, Wang P, Dong W, Chen Z, Wu M, Wang Z et al (2022) Spatial-temporal changes of iron deposition and iron metabolism after traumatic brain injury in mice. Front Mol Neurosci 15:949573. https://doi.org/10.3389/fnmol.2022.949573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tang S, Gao P, Chen H, Zhou X, Ou Y, He Y (2020) The role of iron, its metabolism and ferroptosis in traumatic brain injury. Front Cell Neurosci 14:590789. https://doi.org/10.3389/fncel.2020.590789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Commission of Shanghai Municipality under the Natural Science Foundation of Shanghai [19ZR1438600 and 21142202100].

Author information

Authors and Affiliations

Authors

Contributions

Chen, SW conceived of the research and revised the manuscript. Zhang, CH and Xu, C performed the experiments and collected the data. Cao, HL, Jing, Y, and Wang, XY were responsible for the data analysis. Zhao, JW and Gong, QY prepared materials. Zhang, CH and Xu, C wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shiwen Chen.

Ethics declarations

Ethics Approval

This study was approved by the Animal Ethics Committee of the Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine for the care and use of experimental animals.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xu, C., Jing, Y. et al. Deferoxamine Induces Autophagy Following Traumatic Brain Injury via TREM2 on Microglia. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03875-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03875-x

Keywords

Navigation