Skip to main content
Log in

Interleukin-6 Inhibits Expression of miR-204-5p, a Regulator of Oligodendrocyte Differentiation: Involvement of miR-204-5p in the Prevention of Chemical-Induced Oligodendrocyte Impairment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oligodendrocytes (OLs) form myelin sheaths around axons in the central nervous system (CNS) facilitate the propagation of action potentials. The studies have shown that the differentiation and maturation of OLs involve microRNA (miR) regulation. The recent findings have addressed that miR-204 regulates OL differentiation in culture. In this study, through in situ hybridization in combination with immunohistochemistry, we showed that microRNA-204-5p in the corpus callosum was mainly expressed in OLs immunoreactive with adenomatous polyposis coli (APC), an OL marker. We also found miR-204-5p expression in mature OLs was suppressed by the addition of interleukin-6 (IL-6). Moreover, IL-6-induced inhibition of miR-204-5p expression was blocked by the addition of the inhibitors specific for p38 mitogen-activated protein kinase (p38MAPK) or phosphatidylinositol 3-kinase (PI3K) pathway. We further utilized a rat model by feeding cuprizone (CPZ)-containing diet for 3 weeks to induce demyelination and gliosis in the corpus callosum, as well as the upregulation of IL-6 gene expression significantly. Despite that miR-204-5p expression in the corpus callosum was not altered after feeding by CPZ for 3 weeks, its expression was increased and IL-6 transcription was decreased in the corpus callosum of the recovery group that was fed by CPZ for the first 2 weeks and by the regular diet for one more week. Our data demonstrate that miR-204-5p expression in OLs declined under the influence of the inflamed microenvironment. The findings that an increase in miR-204-5p and declined IL-6 expression observed in the recovery group might be involved with OL repair in the corpus callosum, and also shed light on a potential role for miR-204-5p in OL homeostasis following the white matter injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Abbreviations

APC:

Adenomatous polyposis coli

CNS:

Central nervous system

CPZ:

Cuprizone

CyPA:

Cyclophilin A

DAB:

3,3′-Diaminobenzidine

GC:

Galactocerebroside

GFAP:

Glial fibrillary acidic protein

HRP:

Horseradish peroxidase

HS:

Horse serum

Iba1:

Ionized calcium binding adaptor molecule 1

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

LFB:

Luxol fast blue

miR:

MicroRNA

MAPK:

Mitogen-activated protein kinase

MS:

Multiple sclerosis

MBP:

Myelin basic protein

Myrf:

Myelin regulatory factor

NSCs:

Neural stem cells

OCT:

Optimal cutting temperature

OLs:

Oligodendrocytes

OPCs:

Oligodendrocyte precursor cells

PFA:

Paraformaldehyde

PBS:

Phosphate-buffered saline

PI3K:

Phosphatidylinositol 3-kinase

PLP:

Proteolipid protein

QPCR:

Quantitative real time polymerase chain reaction

RRID:

Research Resource Identifier (see scicrunch.org)

Stat3:

Signal transducer and activator of transcription 3

TNF-α:

Tumor necrosis factor-α

References

  1. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252

    Article  CAS  PubMed  Google Scholar 

  2. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533

    Article  CAS  PubMed  Google Scholar 

  3. Tomassy GS, Berger DR, Chen HH, Kasthuri N, Hayworth KJ, Vercelli A, Seung HS, Lichtman JW et al (2014) Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344(6181):319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayoral SR, Chan JR (2016) The environment rules: spatiotemporal regulation of oligodendrocyte differentiation. Curr Opin Neurobiol 39:47–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zuchero JB, Barres BA (2013) Intrinsic and extrinsic control of oligodendrocyte development. Curr Opin Neurobiol 23(6):914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782

    Article  CAS  PubMed  Google Scholar 

  9. Sung HY, Chen WY, Huang HT, Wang CY, Chang SB, Tzeng SF (2019) Down-regulation of interleukin-33 expression in oligodendrocyte precursor cells impairs oligodendrocyte lineage progression. J Neurochem 150(6):691–708

    Article  CAS  PubMed  Google Scholar 

  10. Simons M, Nave KA (2015) Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8(1):a020479

    Article  PubMed  Google Scholar 

  11. Fitzgerald J, Gallagher L, McGrath J (2019) Widespread Disrupted white matter microstructure in autism spectrum disorders. J Autism Dev Disord 49(7):2664–2674

    Article  PubMed  Google Scholar 

  12. Roberts RE, Anderson EJ, Husain M (2013) White matter microstructure and cognitive function. Neuroscientist 19(1):8–15

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558

    Article  CAS  PubMed  Google Scholar 

  14. Blandford SN, Galloway DA, Moore CS (2018) The roles of extracellular vesicle microRNAs in the central nervous system. Glia 66(11):2267–2278

    Article  PubMed  Google Scholar 

  15. Cochella L, Hobert O (2012) Diverse functions of microRNAs in nervous system development. Curr Top Dev Biol 99:115–143

    Article  CAS  PubMed  Google Scholar 

  16. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC et al (2010) Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 65(5):597–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin D, Shin JY, McManus MT, Ptacek LJ, Fu YH (2009) Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 66(6):843–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fitzpatrick JM, Anderson RC, McDermott KW (2015) MicroRNA: key regulators of oligodendrocyte development and pathobiology. Int J Biochem Cell Biol 65:134–138

    Article  CAS  PubMed  Google Scholar 

  19. Galloway DA, Moore CS (2016) miRNAs as emerging regulators of oligodendrocyte development and differentiation. Front Cell. Dev Biol 4:59

    Google Scholar 

  20. Goldman SA, Kuypers NJ (2015) How to make an oligodendrocyte. Development 142(23):3983–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lepko T, Pusch M, Muller T, Schulte D, Ehses J, Kiebler M, Hasler J, Huttner HB et al (2019) Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J 38(17):e100481

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wittstatt J, Weider M, Wegner M, Reiprich S (2020) MicroRNA miR-204 regulates proliferation and differentiation of oligodendroglia in culture. Glia 68(10):2015–2027

    Article  PubMed  Google Scholar 

  23. Chen R, Wang M, Fu S, Cao F, Duan P, Lu J (2019) MicroRNA-204 may participate in the pathogenesis of hypoxic-ischemic encephalopathy through targeting KLLN. Exp Ther Med 18(5):3299–3306

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, Ye DW, Tian YK (2016) Interleukin-6: an emerging regulator of pathological pain. J Neuroinflammation 13(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 1863(6 Pt A):1218–1227

    Article  CAS  PubMed  Google Scholar 

  26. Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoel I, Stys PK, David S (2020) Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J Neurosci 40(48):9327–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang CY, Yang SH, Tzeng SF (2015) MicroRNA-145 as one negative regulator of astrogliosis. Glia 63(2):194–205

    Article  PubMed  Google Scholar 

  28. Wang CY, Deneen B, Tzeng SF (2019) BRCA1/BRCA2-containing complex subunit 3 controls oligodendrocyte differentiation by dynamically regulating lysine 63-linked ubiquitination. Glia 67(9):1775–1792

    Article  PubMed  Google Scholar 

  29. Huang HT, Tsai SF, Wu HT, Huang HY, Hsieh HH, Kuo YM, Chen PS, Yang CS et al (2019) Chronic exposure to high fat diet triggers myelin disruption and interleukin-33 upregulation in hypothalamus. BMC Neurosci 20(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  30. Plemel JR, Liu WQ, Yong VW (2017) Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 16(9):617–634

    Article  CAS  PubMed  Google Scholar 

  31. Silvestroff L, Bartucci S, Pasquini J, Franco P (2012) Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp Neurol 235(1):357–367

    Article  CAS  PubMed  Google Scholar 

  32. Toomey LM, Papini M, Lins B, Wright AJ, Warnock A, McGonigle T, Hellewell SC, Bartlett CA et al (2021) Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Rep 11(1):22594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fischbach F, Nedelcu J, Leopold P, Zhan J, Clarner T, Nellessen L, Beissel C, van Heuvel Y et al (2019) Cuprizone-induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damage-inducible transcript 3. Glia 67(2):263–276

    Article  PubMed  Google Scholar 

  34. Liu TT, Li Y, Shu Y, Xiao B, Feng L (2018) Ephrinb3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpineinduced model of epilepsy. Int J Mol Med 41(6):3457–3467

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Qi F, Jiang X, Tong T, Chang H, Li RX (2020) MiR-204 inhibits inflammation and cell apoptosis in retinopathy rats with diabetic retinopathy by regulating Bcl-2 and SIRT1 expressions. Eur Rev Med Pharmacol Sci 24(12):6486–6493

    CAS  PubMed  Google Scholar 

  36. Lan T, Li Y, Fan C, Wang L, Wang W, Chen S, Yu SY (2021) MicroRNA-204-5p reduction in rat hippocampus contributes to stress-induced pathology via targeting RGS12 signaling pathway. J Neuroinflammation 18(1):243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng JS, Sun JD, Wang XD, Fu CH, Gan LL, Ma R (2019) MicroRNA-204-5p targets SOX11 to regulate the inflammatory response in spinal cord injury. Eur Rev Med Pharmacol Sci 23(10):4089–4096

    PubMed  Google Scholar 

  38. Tezuka T, Tamura M, Kondo MA, Sakaue M, Okada K, Takemoto K, Fukunari A, Miwa K et al (2013) Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol Dis 59:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoo SW, Agarwal A, Smith MD, Khuder SS, Baxi EG, Thomas AG, Rojas C, Moniruzzaman M et al (2020) Inhibition of neutral sphingomyelinase 2 promotes remyelination. Sci Adv 6(40):eaba5210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cunha MI, Su M, Cantuti-Castelvetri L, Muller SA, Schifferer M, Djannatian M, Alexopoulos I, van der Meer F et al (2020) Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. J Exp Med 217(5):e20191390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132(Pt 12):3342–3352

    Article  PubMed  Google Scholar 

  42. Bremer J, O'Connor T, Tiberi C, Rehrauer H, Weis J, Aguzzi A (2010) Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination. PloS One 5(8):e12450

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sohn EJ, Park HT (2018) MicroRNA mediated regulation of Schwann cell migration and proliferation in peripheral nerve injury. Biomed Res Int 2018:8198365

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Ching-Ting Fu for technical assistance and the “Bio-image Core Facility of the National Core Facility Program for Biotechnology, Ministry of Science and Technology, Taiwan” for the technical services provided.

Funding

This study was supported by the Ministry of Science and Technology, Taiwan (MOST 109-2314-B006-015-MY3 and MOST 110-2811-B-006-522).

Author information

Authors and Affiliations

Authors

Contributions

HTH designed and implemented the experiments, and analyzed the data. CYW and CHH participated in the experimental work, and experimental technical support. SFT, the senior author, provided oversight, experimental design, result interpretation, and manuscript preparation/editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shun-Fen Tzeng.

Ethics declarations

Ethics Approval

All animal studies were approved by the National Cheng Kung University Institutional Animal Care and Use Committee, Tainan, Taiwan (IACUC approval number: 109072).

Consent to Participate

Not applicable.

Consent for Publication

All authors consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1009 kb)

ESM 2

(DOC 208 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HT., Wang, CY., Ho, CH. et al. Interleukin-6 Inhibits Expression of miR-204-5p, a Regulator of Oligodendrocyte Differentiation: Involvement of miR-204-5p in the Prevention of Chemical-Induced Oligodendrocyte Impairment. Mol Neurobiol 61, 1953–1968 (2024). https://doi.org/10.1007/s12035-023-03681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03681-5

Keywords

Navigation