Skip to main content
Log in

Genetic and Pharmacological Modulation of P75 Neurotrophin Receptor Attenuate Brain Damage After Ischemic Stroke in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The precursor nerve growth factor (ProNGF) and its receptor p75 neurotrophin receptor (p75NTR) are upregulated in several brain diseases, including ischemic stroke. The activation of p75NTR is associated with neuronal apoptosis and inflammation. Thus, we hypothesized that p75NTR modulation attenuates brain damage and improves functional outcomes after ischemic stroke. Two sets of experiments were performed. (1) Adult wild-type (WT) C57BL/6 J mice were subjected to intraluminal suture-middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. Pharmacological inhibitor of p75NTR, LM11A-31 (50 mg/kg), or normal saline was administered intraperitoneally (IP) 1 h post-MCAO, and animals survived for 24 h. (2) Adult p75NTR heterozygous knockout (p75NTR+/−) and WT were subjected to photothrombotic (pMCAO) to induce ischemic stroke, and the animals survived for 72 h. The sensory-motor function of animals was measured using Catwalk XT. The brain samples were collected to assess infarction volume, edema, hemorrhagic transformation, neuroinflammation, and signaling pathway at 24 and 72 h after the stroke. The findings described that pharmacological inhibition and genetic knocking down of p75NTR reduce infarction size, edema, and hemorrhagic transformation following ischemic stroke. Additionally, p75NTR modulation significantly decreased several anti-apoptosis markers and improved sensory motor function compared to the WT mice following ischemic stroke. Our observations exhibit that the involvement of p75NTR in ischemic stroke and modulation of p75NTR could improve the outcome of ischemic stroke by increasing cell survival and enhancing motor performance. LM11A-31 has the potential to be a promising therapeutic agent for ischemic stroke. However, more evidence is needed to illuminate the efficacy of LM11A-31 in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data generated and analyzed in this study are available from the corresponding author on reasonable request.

Code Availability

Not applicable

Abbreviations

AD:

Alzheimer’s disease

Akt:

Protein kinase B

Bax:

Bcl-2 associated X protein

BBB:

Blood-brain barrier

Bcl-2:

B-cell lymphoma 2

BDNF:

Brain-derived neurotrophic factor

CNSL:

Central nervous system

dMCAO:

Distal-middle cerebral artery occlusion

CBF:

Cerebral blood flow

ERK½:

Extracellular signal-regulated kinase

GSK3β:

Glycogen synthase kinase 3 beta

HT:

Hemorrhagic transformation

IP:

Intraperitoneally

JNK:

C-Jun N-terminal kinase

MCAO:

Middle cerebral artery occlusion

NFκB:

Nuclear factor kappa- light- chain- enhancer of activated B cells

NGF:

Nerve growth factor

NT-3:

Neurotrophin-3

NT-4:

Neurotrophin-4

P75NTR+/− :

P75NTR heterozygous knock out

ProNGF:

Precursor nerve growth factor

pMCAO:

Photothrombotic middle cerebral artery occlusion

RhoA:

Ras homolog gene family member A

TBI:

Traumatic brain injury

TNF-α:

Tumor necrosis factor-alpha

Trk:

Tyrosine receptor kinase

tPA:

Tissue plasminogen activator

WT:

Wild type

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE et al (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation 145(8):e153–e639

    Article  PubMed  Google Scholar 

  2. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):1–24

    Article  Google Scholar 

  3. Grønberg NV, Johansen FF, Kristiansen U, Hasseldam H (2013) Leukocyte infiltration in experimental stroke. J Neuroinflammation 10(1):1–9

    Article  Google Scholar 

  4. Jin R, Liu L, Zhang S, Nanda A, Li G (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6(5):834–851

    Article  PubMed  Google Scholar 

  5. Slujitoru A-S, Enache A-L, Pintea IL, Rolea E, Stocheci CM, Pop O, Predescu A (2012) Clinical and morphological correlations in acute ischemic stroke. Romanian Journal of Morphology and Embryology=Revue Roumaine de Morphologie et Embryologie 53(4):917–926

    PubMed  Google Scholar 

  6. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN et al (2021) 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 52(7):e364–e467

    Article  PubMed  Google Scholar 

  7. Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, Olson DM, Hernandez AF et al (2013) Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA 309(23):2480–2488

    Article  CAS  PubMed  Google Scholar 

  8. Wu D (2005) Neuroprotection in experimental stroke with targeted neurotrophins. NeuroRx 2(1):120–128

    Article  PubMed  PubMed Central  Google Scholar 

  9. McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22(1):295–318

    Article  CAS  PubMed  Google Scholar 

  10. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiesmann C, De Vos A (2001) Nerve growth factor: structure and function. Cellular and Molecular Life Sciences CMLS 58(5):748–759

    Article  CAS  PubMed  Google Scholar 

  12. Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T (2022) Lost in translation: neurotrophins biology and function in the neurovascular unit. The Neuroscientist:10738584221104982. https://doi.org/10.1177/10738584221104982

  13. Meeker RB, Williams KS (2015) The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res 10(5):721–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sankorrakul K, Qian L, Thangnipon W, Coulson EJ (2021) Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 158(6):1292–1306

    Article  CAS  PubMed  Google Scholar 

  15. Aloyz RS, Bamji SX, Pozniak CD, Toma JG, Atwal J, Kaplan DR, Miller FD (1998) p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J Cell Biol 143(6):1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang D, Zhao S, Zhang Z, Xu D, Lian D, Wu J, He D, Sun K et al (2021) Regulation of the p75 neurotrophin receptor attenuates neuroinflammation and stimulates hippocampal neurogenesis in experimental Streptococcus pneumoniae meningitis. J Neuroinflammation 18(1):1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu Z, Shi W-H, Xu L-B, Shao M-F, Chen Z-P, Zhu G-C, Hou Q (2018) Resident microglia activate before peripheral monocyte infiltration and p75NTR blockade reduces microglial activation and early brain injury after subarachnoid hemorrhage. ACS Chem Neurosci 10(1):412–423

    Article  PubMed  Google Scholar 

  18. Liu Z, Yan A, Zhao J, Yang S, Song L, Liu Z (2021) The p75 neurotrophin receptor as a novel intermediate in L-dopa-induced dyskinesia in experimental Parkinson’s disease. Exp Neurol 342:113740

    Article  CAS  PubMed  Google Scholar 

  19. Zagrebelsky M, Holz A, Dechant G, Barde Y-A, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25(43):9989–9999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sebastiani A, Gölz C, Werner C, Schäfer MK, Engelhard K, Thal SC (2015) Proneurotrophin binding to P75 neurotrophin receptor (P75ntr) is essential for brain lesion formation and functional impairment after experimental traumatic brain injury. J Neurotrauma 32(20):1599–1607

    Article  PubMed  Google Scholar 

  21. Mañucat-Tan NB, Shen L-L, Bobrovskaya L, Al-Hawwas M, Zhou FH, Wang Y-J, Zhou X-F (2019) Knockout of p75 neurotrophin receptor attenuates the hyperphosphorylation of Tau in pR5 mouse model. Aging (Albany NY) 11(17):6762

    Article  PubMed  Google Scholar 

  22. Zhao M, Wang Y, Li G, Li J, Yang K, Liu C, Wen X, Song J (2020) The role and potential mechanism of p75NTR in mineralization via in vivo p75NTR knockout mice and in vitro ectomesenchymal stem cells. Cell Prolif 53(2):e12758

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murray SS, Bartlett PF, Cheema SS (1999) Differential loss of spinal sensory but not motor neurons in the p75NTR knockout mouse. Neurosci Lett 267(1):45–48

    Article  CAS  PubMed  Google Scholar 

  24. Dreetz Gjerstad M, Tandrup T, Koltzenburg M, Jakobsen J (2002) Predominant neuronal B-cell loss in L5 DRG of p75 receptor-deficient mice. J Anat 200(1):81–87

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simmons DA, Knowles JK, Belichenko NP, Banerjee G, Finkle C, Massa SM, Longo FM (2014) A small molecule p75NTR ligand, LM11A-31, reverses cholinergic neurite dystrophy in Alzheimer’s disease mouse models with mid-to late-stage disease progression. PLoS One 9(8):e102136

    Article  PubMed  PubMed Central  Google Scholar 

  26. Massa SM, Xie Y, Yang T, Harrington AW, Kim ML, Yoon SO, Kraemer R, Moore LA et al (2006) Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. J Neurosci 26(20):5288–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. James ML, Belichenko NP, Shuhendler AJ, Hoehne A, Andrews LE, Condon C, Nguyen T-VV, Reiser V et al (2017) [18F] GE-180 PET detects reduced microglia activation after LM11A-31 therapy in a mouse model of Alzheimer’s disease. Theranostics 7(6):1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi J, Longo FM, Massa SM (2013) A small molecule p75NTR ligand protects neurogenesis after traumatic brain injury. Stem cells 31(11):2561–2574

    Article  CAS  PubMed  Google Scholar 

  29. Simmons DA, Belichenko NP, Ford EC, Semaan S, Monbureau M, Aiyaswamy S, Holman CM, Condon C et al (2016) A small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice. Hum Mol Genet 25(22):4920–4938

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nasoohi S, Ghahremani PT, Alehossein P, Zadeh SE, BaniArdalan S, Ismael S, Vatanpour H, Ahmadiani A (2022) The p75 neurotrophin receptor inhibitor, LM11A-31, ameliorates acute stroke injury and modulates astrocytic proNGF. Experimental Neurology 359:114161

  31. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 1(2):94–99

    Article  PubMed  PubMed Central  Google Scholar 

  32. Knowles JK, Simmons DA, Nguyen T-VV, Vander Griend L, Xie Y, Zhang H, Yang T, Pollak J et al (2013) A small molecule p75NTR ligand prevents cognitive deficits and neurite degeneration in an Alzheimer’s mouse model. Neurobiol Aging 34(8):2052–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elshaer SL, Alwhaibi A, Mohamed R, Lemtalsi T, Coucha M, Longo FM, El-Remessy AB (2019) Modulation of the p75 neurotrophin receptor using LM11A-31 prevents diabetes-induced retinal vascular permeability in mice via inhibition of inflammation and the RhoA kinase pathway. Diabetologia 62(8):1488–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishrat T, Pillai B, Soliman S, Fouda AY, Kozak A, Johnson MH, Ergul A, Fagan SC (2015) Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol 51(3):1542–1553

    Article  CAS  PubMed  Google Scholar 

  35. Connolly ES, Winfree CJ, Stern DM, Stern DM, Solomon RA, Pinsky DJ (1996) Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38(3):523–532

    PubMed  Google Scholar 

  36. Porritt MJ, Andersson HC, Hou L, Nilsson Å, Pekna M, Pekny M, Nilsson M (2012) Photothrombosis-induced infarction of the mouse cerebral cortex is not affected by the Nrf2-activator sulforaphane. PLoS One 7(7):e41090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Labat-Gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. JoVE (Journal of Visualized Experiments) 76:e50370

    Google Scholar 

  38. Ahmed HA, Ismael S, Salman M, Devlin P, McDonald MP, Liao F-F, Ishrat T (2022) Direct AT2R stimulation slows post-stroke cognitive decline in the 5XFAD Alzheimer’s disease mice. Mol Neurobiol 59(7):4124–4140

    Article  CAS  PubMed  Google Scholar 

  39. Ismael S, Zhao L, Nasoohi S, Ishrat T (2018) Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  40. Walter J, Kovalenko O, Younsi A, Grutza M, Unterberg A, Zweckberger K (2020) The CatWalk XT® is a valid tool for objective assessment of motor function in the acute phase after controlled cortical impact in mice. Behav Brain Res 392:112680

    Article  PubMed  Google Scholar 

  41. Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Jickling GC (2021) Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol 12:661955

    Article  PubMed  PubMed Central  Google Scholar 

  42. Watters O, O’Connor JJ (2011) A role for tumor necrosis factor-α in ischemia and ischemic preconditioning. J Neuroinflammation 8:1–8

    Article  Google Scholar 

  43. Mattson MP, Camandola S (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J Clin Investig 107(3):247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meeker R, Williams K (2014) Dynamic nature of the p75 neurotrophin receptor in response to injury and disease. J Neuroimmune Pharmacol 9:615–628

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu C, Fujihara H, Yao J, Qi S, Li H, Shimoji K, Baba H (2003) Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke 34(7):1803–1808

    Article  CAS  PubMed  Google Scholar 

  46. Gu Z, Jiang Q, Zhang G (2001) Extracellular signal-regulated kinase and c-Jun N-terminal protein kinase in ischemic tolerance. NeuroReport 12(16):3487–3491

    Article  CAS  PubMed  Google Scholar 

  47. Shamloo M, Rytter A, Wieloch T (1999) Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 93(1):81–88

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Li Z, Zhang X, Wang S, Zhu C, Miao J, Chen L, Cui L et al (2014) Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4, p-p38MAPK, NF-κB, TNF-α and MMP-9 expression, up-regulated claudin-5 expression, ameliorated BBB permeability. Neurochem Res 39(1):97–106

    Article  CAS  PubMed  Google Scholar 

  49. Hwang CJ, Yun H-M, Jung YY, Lee DH, Yoon NY, Seo HO, Han J-Y, Oh K-W et al (2015) Reducing effect of IL-32α in the development of stroke through blocking of NF-κB, but enhancement of STAT3 pathways. Mol Neurobiol 51(2):648–660

    Article  CAS  PubMed  Google Scholar 

  50. Forgione N, Fehlings MG (2014) Rho-ROCK inhibition in the treatment of spinal cord injury. World Neurosurg 82(3–4):e535–e539

    Article  PubMed  Google Scholar 

  51. Yang B, Wang L, Nie Y, Wei W, Xiong W (2021) proBDNF expression induces apoptosis and inhibits synaptic regeneration by regulating the RhoA-JNK pathway in an in vitro post-stroke depression model. Transl Psychiatry 11(1):1–10

    Article  Google Scholar 

  52. Klamer G, Song E, Ko KH, O’Brien TA, Dolnikov A (2010) Using small molecule GSK3beta inhibitors to treat inflammation. Curr Med Chem 17(26):2873–2881. https://doi.org/10.2174/092986710792065090

    Article  CAS  PubMed  Google Scholar 

  53. Abdullahi W, Tripathi D, Ronaldson PT (2018) Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 315(3):C343–C356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rochfort KD, Cummins PM (2015) Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc Res 100:48–53

    Article  CAS  PubMed  Google Scholar 

  55. Hardwick JM, Soane L (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol 5(2):a008722

    Article  PubMed  PubMed Central  Google Scholar 

  56. Starkey ML, Barritt AW, Yip PK, Davies M, Hamers FP, McMahon SB, Bradbury EJ (2005) Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp Neurol 195(2):524–539

    Article  PubMed  Google Scholar 

  57. Guillot TS, Asress SA, Richardson JR, Glass JD, Miller GW (2008) Treadmill gait analysis does not detect motor deficits in animal models of Parkinson’s disease or amyotrophic lateral sclerosis. J Mot Behav 40(6):568–577

    Article  PubMed  Google Scholar 

  58. Zheng G, Younsi A, Scherer M, Riemann L, Walter J, Skutella T, Unterberg A, Zweckberger K (2021) The CatWalk XT® gait analysis is closely correlated with tissue damage after cervical spinal cord injury in rats. Appl Sci 11(9):4097

    Article  CAS  Google Scholar 

  59. Ritala JF, Lyne SB, Sajanti A, Girard R, Koskimäki J (2022) Towards a comprehensive understanding of p75 neurotrophin receptor functions and interactions in the brain. Neural Regen Res 17(4):701

    Article  CAS  PubMed  Google Scholar 

  60. Qin X, Wang J, Chen S, Liu G, Wu C, Lv Q, He X, Bai X et al (2022) Astrocytic p75NTR expression provoked by ischemic stroke exacerbates the blood–brain barrier disruption. Glia 70(5):892–912

    Article  CAS  PubMed  Google Scholar 

  61. Pozniak PD, White MK, Khalili K (2014) TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 9(2):133–141

    Article  PubMed  Google Scholar 

  62. Ridder D, Schwaninger M (2009) NF-κB signaling in cerebral ischemia. Neuroscience 158(3):995–1006

    Article  CAS  PubMed  Google Scholar 

  63. Harrington AW, Kim JY, Yoon SO (2002) Activation of Rac GTPase by p75 is necessary for c-jun N-terminal kinase-mediated apoptosis. J Neurosci 22(1):156–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Srivastava M, Ahmad N, Gupta S, Mukhtar H (2001) Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis: antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis. J Biol Chem 276(18):15481–15488

    Article  CAS  PubMed  Google Scholar 

  65. Miao J, Wang L, Zhang X, Zhu C, Cui L, Ji H, Liu Y, Wang X (2016) Protective effect of aliskiren in experimental ischemic stroke: up-regulated p-PI3K, p-AKT, Bcl-2 expression, attenuated bax expression. Neurochem Res 41(9):2300–2310

    Article  CAS  PubMed  Google Scholar 

  66. Liu H, Zhang Y, Zhang S, Xin T, Li W, Wu W, Pang Q, Chen Y (2015) Correlation research on the protein expression (p75NTR, bax, bcl-2, and caspase-3) and cortical neuron apoptosis following mechanical injury in rat. Eur Rev Med Pharmacol Sci 19(18):3459–3467

    PubMed  Google Scholar 

  67. Yuan Q, Su H, Wu W, Lin Z-X (2012) P75 and phosphorylated c-Jun are differentially regulated in spinal motoneurons following axotomy in rats. Neural Regen Res 7(26):2005

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Narumiya S, Thumkeo D (2018) Rho signaling research: history, current status and future directions. FEBS Lett 592(11):1763–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20(14):5329–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dai Z-K, Kao C-L, Hsieh S-L, Chen J, Wu B-N (2016) Restoration of uridine 5′-triphosphate-suppressed delayed rectifying K+ currents by an NO activator KMUP-1 involves RhoA/Rho kinase signaling in pulmonary artery smooth muscle cells. Kaohsiung J Med Sci 32(12):607–613

    Article  PubMed  Google Scholar 

  72. Abdel-Aleem GA, Khaleel EF (2018) Rutin hydrate ameliorates cadmium chloride-induced spatial memory loss and neural apoptosis in rats by enhancing levels of acetylcholine, inhibiting JNK and ERK1/2 activation and activating mTOR signalling. Arch Physiol Biochem 124(4):367–377

    Article  CAS  PubMed  Google Scholar 

  73. Tang Y, Geng Q, Chen D, Zhao S, Liu X, Wang Z (2017) Germline proliferation is regulated by somatic endocytic genes via JNK and BMP signaling in Drosophila. Genetics 206(1):189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Downward J (1999) How BAD phosphorylation is good for survival. Nat Cell Biol 1(2):E33–E35

    Article  CAS  PubMed  Google Scholar 

  75. Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276(7):5256–5264

    Article  CAS  PubMed  Google Scholar 

  76. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21(3):893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen X, Liu Y, Zhu J, Lei S, Dong Y, Li L, Jiang B, Tan L et al (2016) GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion. Sci Rep 6(1):1–16

    Google Scholar 

  78. Li Y, Zhu J, Liu Y, Chen X, Lei S, Li L, Jiang B, Tan L et al (2016) Glycogen synthase kinase 3β influences injury following cerebral ischemia/reperfusion in rats. Int J Biol Sci 12(5):518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pang T, Wang Y-j, Gao Y-x, Xu Y, Li Q, Zhou Y-b, Xu L, Huang Z-j, Zhang et al (2016) A novel GSK-3β inhibitor YQ138 prevents neuronal injury induced by glutamate and brain ischemia through activation of the Nrf2 signaling pathway. Acta Pharmacol Sin 37(6):741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ramirez SH, Fan S, Zhang M, Papugani A, Reichenbach N, Dykstra H, Mercer AJ, Tuma RF et al (2010) Inhibition of glycogen synthase kinase 3β (GSK3β) decreases inflammatory responses in brain endothelial cells. Am J Pathol 176(2):881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  CAS  PubMed  Google Scholar 

  82. Sawe N, Steinberg G, Zhao H (2008) Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 86(8):1659–1669

    Article  CAS  PubMed  Google Scholar 

  83. Date I, Takagi N, Takagi K, Tanonaka K, Funakoshi H, Matsumoto K, Nakamura T, Takeo S (2006) Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood–brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci Lett 407(2):141–145

    Article  CAS  PubMed  Google Scholar 

  84. Yuan S, Liu KJ, Qi Z (2020) Occludin regulation of blood–brain barrier and potential therapeutic target in ischemic stroke. Brain Circulation 6(3):152

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ahishali B, Kaya M, Kalayci R, Uzun H, Bilgic B, Arican N, Elmas I, Aydin S et al (2005) Effects of lipopolysaccharide on the blood-brain barrier permeability in prolonged nitric oxide blockade-induced hypertensive rats. Int J Neurosci 115(2):151–168

    Article  CAS  PubMed  Google Scholar 

  86. Jiao H, Wang Z, Liu Y, Wang P, Xue Y (2011) Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44(2):130–139

    Article  CAS  PubMed  Google Scholar 

  87. Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, Li B, Wang Z et al (2014) Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood–brain barrier integrity during experimental cerebral ischemia–reperfusion injury. Transl Stroke Res 5(5):618–626

    Article  PubMed  Google Scholar 

  88. Zehendner CM, Librizzi L, Hedrich J, Bauer NM, Angamo EA, De Curtis M, Luhmann HJ (2013) Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption. PLoS One 8(12):e82823

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang S, An Q, Wang T, Gao S, Zhou G (2018) Autophagy-and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood–brain barrier permeability during early reperfusion in stroke. Neuroscience 377:126–137

    Article  CAS  PubMed  Google Scholar 

  90. Kuo M-H, Lee H-F, Tu Y-F, Lin L-H, Cheng Y-Y, Lee H-T (2019) Astaxanthin ameliorates ischemic-hypoxic-induced neurotrophin receptor p75 upregulation in the endothelial cells of neonatal mouse brains. Int J Mol Sci 20(24):6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bärmann J, Walter H, Pikhovych A, Endepols H, Fink G, Rueger M, Schroeter M (2021) An analysis of the CatWalk XT and a composite score to assess neurofunctional deficits after photothrombosis in mice. Neurosci Lett 751:135811

    Article  PubMed  Google Scholar 

  92. Hetze S, Römer C, Teufelhart C, Meisel A, Engel O (2012) Gait analysis as a method for assessing neurological outcome in a mouse model of stroke. J Neurosci Methods 206(1):7–14

    Article  PubMed  Google Scholar 

  93. Dokter M, Busch R, Poser R, Vogt M, von Bohlen Und Halbach V, Gass P, Unsicker K, von Bohlen Und Halbach O (2015) Implications of p75NTR for dentate gyrus morphology and hippocampus-related behavior revisited. Brain Struct Funct 220(3):1449–1462

    Article  CAS  PubMed  Google Scholar 

  94. Deacon RM (2013) Measuring the strength of mice. JoVE (Journal of Visualized Experiments) 76:e2610

    Google Scholar 

  95. Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug design, development and therapy 9:3445–3454. https://doi.org/10.2147/DDDT.S56071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Macrae I (2011) Preclinical stroke research–advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol 164(4):1062–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the UTHSC Bridge funding award (E073005058–Bridge Support-2022) and the National Institute of Health (R01-NS097800 and R56 NS127924-01) to TI.

Author information

Authors and Affiliations

Authors

Contributions

Golnoush Mirzahosseini—conducted experiments, result analysis, writing of the first draft . Saifudeen Ismael conducted experiments and helped data analysis and Mohd. Salman—reviewed the manuscript and data analysis. Santosh Kumar—critically reviewed the manuscript. Tauheed Ishrat—designed and oversaw the whole project including experimental design, managing resources and critically reviewed the manuscript.

Corresponding author

Correspondence to Tauheed Ishrat.

Ethics declarations

All procedures related to animal studies were approved by the institutional animal committee at UTHSC, in full accordance with the ethical guidelines of the National Institutes of Health for the care and use of laboratory animals.

Consent to Participate

Not applicable

Consent for Publication

All authors have agreed to publish this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 35078 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzahosseini, G., Ismael, S., Salman, M. et al. Genetic and Pharmacological Modulation of P75 Neurotrophin Receptor Attenuate Brain Damage After Ischemic Stroke in Mice. Mol Neurobiol 61, 276–293 (2024). https://doi.org/10.1007/s12035-023-03550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03550-1

Keywords

Navigation