Skip to main content

Advertisement

Log in

The Role of Gut Microbiota in Blood–Brain Barrier Disruption after Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Collaborators GBDS (2019) Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:439–458. https://doi.org/10.1016/S1474-4422(19)30034-1

    Article  Google Scholar 

  2. Iadecola C, Buckwalter MS, Anrather J (2020) Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest 130:2777–2788. https://doi.org/10.1172/JCI135530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang Q, Xia J (2021) Influence of the gut microbiome on inflammatory and immune response after stroke. Neurol Sci 42:4937–4951. https://doi.org/10.1007/s10072-021-05603-6

    Article  PubMed  Google Scholar 

  4. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol 18:1058–1066. https://doi.org/10.1016/S1474-4422(19)30078-X

    Article  PubMed  Google Scholar 

  5. Chidambaram SB, Rathipriya AG, Mahalakshmi AM, Sharma S, Hediyal TA, Ray B, Sunanda T, Rungratanawanich W, Kashyap RS, Qoronfleh MW, Essa MM, Song BJ, Monaghan TM (2022) The influence of gut dysbiosis in the pathogenesis and management of ischemic stroke. Cells 11. https://doi.org/10.3390/cells11071239

  6. Falony G, Vandeputte D, Caenepeel C, Vieira-Silva S, Daryoush T, Vermeire S, Raes J (2019) The human microbiome in health and disease: hype or hope. Acta Clin Belg 74:53–64. https://doi.org/10.1080/17843286.2019.1583782

    Article  PubMed  Google Scholar 

  7. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF (2019) Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation 16:53. https://doi.org/10.1186/s12974-019-1434-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lazar E, Sherzai A, Adeghate J, Sherzai D (2021) Gut dysbiosis, insulin resistance and Alzheimer’s disease: review of a novel approach to neurodegeneration. Front Biosci (Schol Ed) 13:17–29. https://doi.org/10.52586/S550

    Article  CAS  PubMed  Google Scholar 

  9. Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 46:77–89. https://doi.org/10.1016/j.gtc.2016.09.007

    Article  PubMed  Google Scholar 

  10. Huang Z, Wong LW, Su Y, Huang X, Wang N, Chen H, Yi C (2020) Blood-brain barrier integrity in the pathogenesis of Alzheimer’s disease. Front Neuroendocrinol 59:100857. https://doi.org/10.1016/j.yfrne.2020.100857

    Article  CAS  PubMed  Google Scholar 

  11. Langen UH, Ayloo S, Gu C (2019) Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol 35:591–613. https://doi.org/10.1146/annurev-cellbio-100617-062608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Piro JR, Suidan GL, Quan J, Pi Y, O’Neill SM, Ilardi M, Pozdnyakov N, Lanz TA, Xi H, Bell RD, Samad TA (2018) Inhibition of 2-AG hydrolysis differentially regulates blood brain barrier permeability after injury. J Neuroinflammation 15:142. https://doi.org/10.1186/s12974-018-1166-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Gao J, Liu K, Zhang HL (2021) Microbiota-gut-brain axis and Alzheimer’s disease: Implications of the blood-brain barrier as an intervention target. Mech Ageing Dev 199:111560. https://doi.org/10.1016/j.mad.2021.111560

    Article  CAS  PubMed  Google Scholar 

  14. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  15. Erdo F, Denes L, de Lange E (2017) Age-associated physiological and pathological changes at the blood-brain barrier: a review. J Cereb Blood Flow Metab 37:4–24. https://doi.org/10.1177/0271678X16679420

    Article  CAS  PubMed  Google Scholar 

  16. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  17. Profaci CP, Munji RN, Pulido RS and Daneman R (2020) The blood-brain barrier in health and disease: important unanswered questions. J Exp Med 217. https://doi.org/10.1084/jem.20190062

  18. Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA (2018) Gut reactions: how the blood-brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood) 243:159–165. https://doi.org/10.1177/1535370217743766

    Article  CAS  PubMed  Google Scholar 

  19. Mae MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Chin Foo J, Cazenave-Gassiot A, Wenk MR, Zarb Y, Lavina B, Quaggin SE, Jeansson M, Gu C, Silver DL, Vanlandewijck M, Butcher EC, Keller A, Betsholtz C (2021) Single-cell analysis of blood-brain barrier response to pericyte loss. Circ Res 128:e46–e62. https://doi.org/10.1161/CIRCRESAHA.120.317473

    Article  CAS  PubMed  Google Scholar 

  20. Huang X, Hussain B, Chang J (2021) Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 27:36–47. https://doi.org/10.1111/cns.13569

    Article  CAS  PubMed  Google Scholar 

  21. Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ (2018) The blood-brain barrier in psychosis. Lancet Psychiatry 5:79–92. https://doi.org/10.1016/S2215-0366(17)30293-6

    Article  PubMed  Google Scholar 

  22. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murata M, Kojima T, Yamamoto T, Go M, Takano K, Osanai M, Chiba H, Sawada N (2005) Down-regulation of survival signaling through MAPK and Akt in occludin-deficient mouse hepatocytes in vitro. Exp Cell Res 310:140–151. https://doi.org/10.1016/j.yexcr.2005.07.017

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4. https://doi.org/10.3171/foc.2007.22.5.5

    Article  PubMed  Google Scholar 

  25. Van Dyken P, Lacoste B (2018) Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci 12:930. https://doi.org/10.3389/fnins.2018.00930

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135:311–336. https://doi.org/10.1007/s00401-018-1815-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao Y, Chen ZL, Norris EH, Strickland S (2014) Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun 5:3413. https://doi.org/10.1038/ncomms4413

    Article  CAS  PubMed  Google Scholar 

  28. Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B (2021) Immune cells in the BBB disruption after acute ischemic stroke: targets for immune therapy? Front Immunol 12:678744. https://doi.org/10.3389/fimmu.2021.678744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405. https://doi.org/10.1038/nn.2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wettschureck N, Strilic B, Offermanns S (2019) Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev 99:1467–1525. https://doi.org/10.1152/physrev.00037.2018

    Article  CAS  PubMed  Google Scholar 

  31. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ (2020) Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol 11:1024. https://doi.org/10.3389/fimmu.2020.01024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorhouse AJ, Nabekura J, Wake H (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10:5816. https://doi.org/10.1038/s41467-019-13812-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu CY, Wang X, Liu C, Zhang HL (2019) Pharmacological targeting of microglial activation: new therapeutic approach. Front Cell Neurosci 13:514. https://doi.org/10.3389/fncel.2019.00514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12. https://doi.org/10.1016/j.bbi.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  35. Tang W, Zhu H, Feng Y, Guo R, Wan D (2020) The impact of gut microbiota disorders on the blood-brain barrier. Infect Drug Resist 13:3351–3363. https://doi.org/10.2147/IDR.S254403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Noble EE, Hsu TM, Kanoski SE (2017) Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci 11:9. https://doi.org/10.3389/fnbeh.2017.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prakash R, Carmichael ST (2015) Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 28:556–564. https://doi.org/10.1097/WCO.0000000000000248

    Article  PubMed  PubMed Central  Google Scholar 

  38. Keaney J, Campbell M (2015) The dynamic blood-brain barrier. FEBS J 282:4067–4079. https://doi.org/10.1111/febs.13412

    Article  CAS  PubMed  Google Scholar 

  39. Denorme F, Portier I, Rustad JL, Cody MJ, de Araujo CV, Hoki C, Alexander MD, Grandhi R, Dyer MR, Neal MD, Majersik JJ, Yost CC and Campbell RA (2022) Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 132. https://doi.org/10.1172/JCI154225

  40. Duris K, Splichal Z, Jurajda M (2018) The role of inflammatory response in stroke associated programmed cell death. Curr Neuropharmacol 16:1365–1374. https://doi.org/10.2174/1570159X16666180222155833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Planas AM (2018) Role of immune cells migrating to the ischemic brain. Stroke 49:2261–2267. https://doi.org/10.1161/STROKEAHA.118.021474

    Article  PubMed  Google Scholar 

  42. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037. https://doi.org/10.1038/nm.2022

    Article  CAS  PubMed  Google Scholar 

  43. Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G, Hermann DM (2013) Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke 44:1690–1697. https://doi.org/10.1161/STROKEAHA.111.000240

    Article  CAS  PubMed  Google Scholar 

  44. Chen ZL, Yao Y, Norris EH, Kruyer A, Jno-Charles O, Akhmerov A, Strickland S (2013) Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J Cell Biol 202:381–395. https://doi.org/10.1083/jcb.201212032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishimura A, Ago T, Kuroda J, Arimura K, Tachibana M, Nakamura K, Wakisaka Y, Sadoshima J, Iihara K, Kitazono T (2016) Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J Cereb Blood Flow Metab 36:1143–1154. https://doi.org/10.1177/0271678X15606456

    Article  CAS  PubMed  Google Scholar 

  46. Sugiyama S, Sasaki T, Tanaka H, Yan H, Ikegami T, Kanki H, Nishiyama K, Beck G, Gon Y, Okazaki S, Todo K, Tamura A, Tsukita S, Mochizuki H (2023) The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep 13:2892. https://doi.org/10.1038/s41598-023-29894-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winkler L, Blasig R, Breitkreuz-Korff O, Berndt P, Dithmer S, Helms HC, Puchkov D, Devraj K, Kaya M, Qin Z, Liebner S, Wolburg H, Andjelkovic AV, Rex A, Blasig IE, Haseloff RF (2021) Tight junctions in the blood-brain barrier promote edema formation and infarct size in stroke - ambivalent effects of sealing proteins. J Cereb Blood Flow Metab 41:132–145. https://doi.org/10.1177/0271678X20904687

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709. https://doi.org/10.1038/sj.jcbfm.9600375

    Article  CAS  PubMed  Google Scholar 

  49. Ye Q, Jo J, Wang CY, Oh H, Choy TJ, Kim K, Da Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK (2023) Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a NO-CCL2-CCR2 pathway. bioRxiv. https://doi.org/10.1101/2023.04.03.535167

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhou M, Li D, Shen Q, Gao L, Zhuang P, Zhang Y, Guo H (2022) Storax inhibits caveolae-mediated transcytosis at blood-brain barrier after ischemic stroke in rats. Front Pharmacol 13:876235. https://doi.org/10.3389/fphar.2022.876235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Liu R, Hasan MN, Fischer S, Chen Y, Como M, Fiesler VM, Bhuiyan MIH, Dong S, Li E, Kahle KT, Zhang J, Deng X, Subramanya AR, Begum G, Yin Y, Sun D (2022) Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke. J Neuroinflammation 19:91. https://doi.org/10.1186/s12974-022-02456-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603–617. https://doi.org/10.1016/j.neuron.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun J, Yu L, Huang S, Lai X, Milner R, Li L (2017) Vascular expression of angiopoietin1, alpha5beta1 integrin and tight junction proteins is tightly regulated during vascular remodeling in the post-ischemic brain. Neuroscience 362:248–256. https://doi.org/10.1016/j.neuroscience.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  54. Shin JA, Yoon JC, Kim M, Park EM (2016) Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury. Free Radic Biol Med 92:78–89. https://doi.org/10.1016/j.freeradbiomed.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  55. Nakano-Doi A, Sakuma R, Matsuyama T, Nakagomi T (2018) Ischemic stroke activates the VE-cadherin promoter and increases VE-cadherin expression in adult mice. Histol Histopathol 33:507–521. https://doi.org/10.14670/HH-11-952

    Article  CAS  PubMed  Google Scholar 

  56. Zhang S, An Q, Wang T, Gao S, Zhou G (2018) Autophagy- and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood-brain barrier permeability during early reperfusion in stroke. Neuroscience 377:126–137. https://doi.org/10.1016/j.neuroscience.2018.02.035

    Article  CAS  PubMed  Google Scholar 

  57. Tsai MM, Chen JL, Lee TH, Liu H, Shanmugam V, Hsieh HL (2022) Brain protective effect of resveratrol via ameliorating interleukin-1beta-induced MMP-9-mediated disruption of ZO-1 arranged integrity. Biomedicines 10. https://doi.org/10.3390/biomedicines10061270

  58. Haley MJ, Lawrence CB (2017) The blood-brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 37:456–470. https://doi.org/10.1177/0271678X16629976

    Article  PubMed  Google Scholar 

  59. Tran KA, Zhang X, Predescu D, Huang X, Machado RF, Gothert JR, Malik AB, Valyi-Nagy T, Zhao YY (2016) Endothelial beta-catenin signaling is required for maintaining adult blood-brain barrier integrity and central nervous system homeostasis. Circulation 133:177–186. https://doi.org/10.1161/CIRCULATIONAHA.115.015982

    Article  CAS  PubMed  Google Scholar 

  60. Yang Y, Rosenberg GA (2011) MMP-mediated disruption of claudin-5 in the blood-brain barrier of rat brain after cerebral ischemia. Methods Mol Biol 762:333–345. https://doi.org/10.1007/978-1-61779-185-7_24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Q, Liu C, Shi R, Zhou S, Shan H, Deng L, Chen T, Guo Y, Zhang Z, Yang GY, Wang Y, Tang Y (2022) Blocking C3d(+)/GFAP(+) A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke. Aging Dis 13:943–959. https://doi.org/10.14336/AD.2021.1029

  62. Yamagata K, Tagami M, Nara Y, Fujino H, Kubota A, Numano F, Kato T, Yamori Y (1997) Faulty induction of blood-brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 24:686–691. https://doi.org/10.1111/j.1440-1681.1997.tb02113.x

    Article  CAS  PubMed  Google Scholar 

  63. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37:1087–1093. https://doi.org/10.1161/01.STR.0000206281.77178.ac

    Article  PubMed  Google Scholar 

  64. Nakagawa S, Ohara H, Niwa M, Yamagata K, Nabika T (2022) Defective function of the blood-brain barrier in a stroke-prone spontaneously hypertensive rat: evaluation in an in vitro cell culture model. Cell Mol Neurobiol 42:243–253. https://doi.org/10.1007/s10571-020-00917-z

    Article  CAS  PubMed  Google Scholar 

  65. Li YN, Pan R, Qin XJ, Yang WL, Qi Z, Liu W, Liu KJ (2014) Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem 129:120–129. https://doi.org/10.1111/jnc.12611

    Article  CAS  PubMed  Google Scholar 

  66. Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG, Tajiri N, Frisina-Deyo A, Boffeli SM, Abraham JV, Pabon M, Wagner A, Ishikawa H, Shinozuka K, Haller E, Sanberg PR, Kaneko Y, Borlongan CV (2013) Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS One 8:e63553. https://doi.org/10.1371/journal.pone.0063553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bai Y, Zhu X, Chao J, Zhang Y, Qian C, Li P, Liu D, Han B, Zhao L, Zhang J, Buch S, Teng G, Hu G, Yao H (2015) Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One 10:e0124362. https://doi.org/10.1371/journal.pone.0124362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin J, Xu Y, Guo P, Chen YJ, Zhou J, Xia M, Tan B, Liu X, Feng H, Chen Y (2023) CCL5/CCR5-mediated peripheral inflammation exacerbates blood-brain barrier disruption after intracerebral hemorrhage in mice. J Transl Med 21:196. https://doi.org/10.1186/s12967-023-04044-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen X, He X, Luo S, Feng Y, Liang F, Shi T, Huang R, Pei Z, Li Z (2018) Vagus nerve stimulation attenuates cerebral microinfarct and colitis-induced cerebral microinfarct aggravation in mice. Front Neurol 9:798. https://doi.org/10.3389/fneur.2018.00798

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xing G, Zhao T, Zhang X, Li H, Li X, Cui P, Li M, Li D, Zhang N, Jiang W (2020) Astrocytic sonic hedgehog alleviates intracerebral hemorrhagic brain injury via modulation of blood-brain barrier integrity. Front Cell Neurosci 14:575690. https://doi.org/10.3389/fncel.2020.575690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiu CD, Yao NW, Guo JH, Shen CC, Lee HT, Chiu YP, Ji HR, Chen X, Chen CC, Chang C (2017) Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage. Oncotarget 8:94850–94861. https://doi.org/10.18632/oncotarget.22022

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yang Y, Yang LY, Orban L, Cuylear D, Thompson J, Simon B, Yang Y (2018) Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain Stimul 11:689–698. https://doi.org/10.1016/j.brs.2018.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, Date I, Yoshino T, Ohtsuka A, Mori S, Nishibori M (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42:1420–1428. https://doi.org/10.1161/STROKEAHA.110.598334

    Article  CAS  PubMed  Google Scholar 

  74. Abdullah Z, Rakkar K, Bath PM, Bayraktutan U (2015) Inhibition of TNF-alpha protects in vitro brain barrier from ischaemic damage. Mol Cell Neurosci 69:65–79. https://doi.org/10.1016/j.mcn.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  75. Jalal FY, Yang Y, Thompson J, Lopez AC, Rosenberg GA (2012) Myelin loss associated with neuroinflammation in hypertensive rats. Stroke 43:1115–1122. https://doi.org/10.1161/STROKEAHA.111.643080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang H, Chen H, Jin J, Liu Q, Zhong D, Li G (2020) Inhibition of the NLRP3 inflammasome reduces brain edema and regulates the distribution of aquaporin-4 after cerebral ischaemia-reperfusion. Life Sci 251:117638. https://doi.org/10.1016/j.lfs.2020.117638

    Article  CAS  PubMed  Google Scholar 

  77. Pan W, Ding Y, Yu Y, Ohtaki H, Nakamachi T, Kastin AJ (2006) Stroke upregulates TNFalpha transport across the blood-brain barrier. Exp Neurol 198:222–233. https://doi.org/10.1016/j.expneurol.2005.11.020

    Article  CAS  PubMed  Google Scholar 

  78. Fan Z, Yuan Y, Wang F, Qi Y, Han H, Wu J, Zhang G, Yang L (2017) Diabetes mitigates the recovery following intracranial hemorrhage in rats. Behav Brain Res 320:412–419. https://doi.org/10.1016/j.bbr.2016.10.047

    Article  CAS  PubMed  Google Scholar 

  79. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O’Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  80. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362. https://doi.org/10.3389/fncel.2014.00362

    Article  PubMed  PubMed Central  Google Scholar 

  81. Anrather J, Iadecola C (2016) Inflammation and stroke: an overview. Neurotherapeutics 13:661–670. https://doi.org/10.1007/s13311-016-0483-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wysocka A, Szczygielski J, Kopanska M, Oertel JM, Glowniak A (2023) Matrix metalloproteinases in cardioembolic stroke: from background to complications. Int J Mol Sci 24. https://doi.org/10.3390/ijms24043628

  83. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175. https://doi.org/10.1038/nm1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F (2018) Targeting vascular inflammation in ischemic stroke: recent developments on novel immunomodulatory approaches. Eur J Pharmacol 833:531–544. https://doi.org/10.1016/j.ejphar.2018.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen Z, Bozec A, Ramming A, Schett G (2019) Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 15:9–17. https://doi.org/10.1038/s41584-018-0109-2

    Article  CAS  PubMed  Google Scholar 

  86. Wu Y, Li J, Shou J, Zhang W, Chen C (2021) Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol 343:113782. https://doi.org/10.1016/j.expneurol.2021.113782

    Article  CAS  PubMed  Google Scholar 

  87. McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28:9451–9462. https://doi.org/10.1523/JNEUROSCI.2674-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, Liang W, Thomson AW, Chen J, Hu X (2013) Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 74:458–471. https://doi.org/10.1002/ana.23815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liesz A, Hu X, Kleinschnitz C, Offner H (2015) Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 46:1422–1430. https://doi.org/10.1161/STROKEAHA.114.008608

    Article  PubMed  PubMed Central  Google Scholar 

  90. Offner H, Hurn PD (2012) A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res 3:324–330. https://doi.org/10.1007/s12975-012-0187-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mamo YA, Angus JA, Ziogas J, Soeding PF, Wright CE (2014) The role of voltage-operated and non-voltage-operated calcium channels in endothelin-induced vasoconstriction of rat cerebral arteries. Eur J Pharmacol 742:65–73. https://doi.org/10.1016/j.ejphar.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  92. Yang G, Qian C, Wang N, Lin C, Wang Y, Wang G, Piao X (2017) Tetramethylpyrazine protects against oxygen-glucose deprivation-induced brain microvascular endothelial cells injury via Rho/Rho-kinase signaling pathway. Cell Mol Neurobiol 37:619–633. https://doi.org/10.1007/s10571-016-0398-4

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Y, Wang T, Yang K, Xu J, Ren L, Li W, Liu W (2016) Cerebral microvascular endothelial cell apoptosis after ischemia: role of enolase-phosphatase 1 activation and aci-reductone dioxygenase 1 translocation. Front Mol Neurosci 9:79. https://doi.org/10.3389/fnmol.2016.00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dharmasaroja PA (2016) Fluid intake related to brain edema in acute middle cerebral artery infarction. Transl Stroke Res 7:49–53. https://doi.org/10.1007/s12975-015-0439-1

    Article  PubMed  Google Scholar 

  95. Stokum JA, Gerzanich V, Simard JM (2016) Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 36:513–538. https://doi.org/10.1177/0271678X15617172

    Article  CAS  PubMed  Google Scholar 

  96. Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641. https://doi.org/10.1080/21688370.2016.1154641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 32:3044–3057. https://doi.org/10.1523/JNEUROSCI.6409-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Song L, Ge S, Pachter JS (2007) Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 109:1515–1523. https://doi.org/10.1182/blood-2006-07-034009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, Chen Y, Shen X, Zheng Y, Zhao Y (2023) Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating caveolin-1-dependent ZO-1 and claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology 21:70. https://doi.org/10.1186/s12951-023-01828-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Duz B, Oztas E, Erginay T, Erdogan E, Gonul E (2007) The effect of moderate hypothermia in acute ischemic stroke on pericyte migration: an ultrastructural study. Cryobiology 55:279–284. https://doi.org/10.1016/j.cryobiol.2007.08.009

    Article  PubMed  Google Scholar 

  101. Persidsky Y, Hill J, Zhang M, Dykstra H, Winfield M, Reichenbach NL, Potula R, Mukherjee A, Ramirez SH, Rom S (2016) Dysfunction of brain pericytes in chronic neuroinflammation. J Cereb Blood Flow Metab 36:794–807. https://doi.org/10.1177/0271678X15606149

    Article  CAS  PubMed  Google Scholar 

  102. Kokovay E, Li L, Cunningham LA (2006) Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26:545–555. https://doi.org/10.1038/sj.jcbfm.9600214

    Article  CAS  PubMed  Google Scholar 

  103. Lamagna C, Bergers G (2006) The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol 80:677–681. https://doi.org/10.1189/jlb.0506309

    Article  CAS  PubMed  Google Scholar 

  104. Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, Kawahara M, Taguchi A, Matsuyama T (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33:1962–74. https://doi.org/10.1002/stem.1977

    Article  CAS  PubMed  Google Scholar 

  105. Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, Kuwahara-Otani S, Hayakawa T, Yagi H, Matsuyama T, Nakagomi T (2016) Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation 13:57. https://doi.org/10.1186/s12974-016-0523-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455. https://doi.org/10.1177/0271678X15610340

    Article  CAS  PubMed  Google Scholar 

  107. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201. https://doi.org/10.1523/JNEUROSCI.4255-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dallerac G, Rouach N (2016) Astrocytes as new targets to improve cognitive functions. Prog Neurobiol 144:48–67. https://doi.org/10.1016/j.pneurobio.2016.01.003

    Article  PubMed  Google Scholar 

  109. Verkhratsky A, Steardo L, Parpura V, Montana V (2016) Translational potential of astrocytes in brain disorders. Prog Neurobiol 144:188–205. https://doi.org/10.1016/j.pneurobio.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  110. Raiteri L, Raiteri M (2015) Multiple functions of neuronal plasma membrane neurotransmitter transporters. Prog Neurobiol 134:1–16. https://doi.org/10.1016/j.pneurobio.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  111. Kimelberg HK (2005) Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50:389–397. https://doi.org/10.1002/glia.20174

    Article  PubMed  Google Scholar 

  112. Sykova E (2001) Glial diffusion barriers during aging and pathological states. Prog Brain Res 132:339–363. https://doi.org/10.1016/S0079-6123(01)32087-3

    Article  CAS  PubMed  Google Scholar 

  113. Pan Q, He C, Liu H, Liao X, Dai B, Chen Y, Yang Y, Zhao B, Bihl J, Ma X (2016) Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow. Mol Brain 9:63. https://doi.org/10.1186/s13041-016-0243-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol 114:459–469. https://doi.org/10.1007/s00401-007-0274-x

    Article  CAS  PubMed  Google Scholar 

  115. Chen L, He FJ, Dong Y, Huang Y, Wang C, Harshfield GA, Zhu H (2020) Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives: a randomized, double-blind, placebo-controlled trial. Hypertension 76:73–79. https://doi.org/10.1161/HYPERTENSIONAHA.120.14800

    Article  CAS  PubMed  Google Scholar 

  116. Tsai HJ, Tsai WC, Hung WC, Hung WW, Chang CC, Dai CY, Tsai YC (2021) Gut microbiota and subclinical cardiovascular disease in patients with type 2 diabetes mellitus. Nutrients 13. https://doi.org/10.3390/nu13082679

  117. Spychala MS, Venna VR, Jandzinski M, Doran SJ, Durgan DJ, Ganesh BP, Ajami NJ, Putluri N, Graf J, Bryan RM, McCullough LD (2018) Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol 84:23–36. https://doi.org/10.1002/ana.25250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee J, d’Aigle J, Atadja L, Quaicoe V, Honarpisheh P, Ganesh BP, Hassan A, Graf J, Petrosino J, Putluri N, Zhu L, Durgan DJ, Bryan RM Jr, McCullough LD, Venna VR (2020) Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ Res 127:453–465. https://doi.org/10.1161/CIRCRESAHA.119.316448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu DJ, Wang KC, Yuan LB, Li HF, Xu YY, Wei LY, Chen L, Jin KK, Lin QQ (2021) Compositional and functional alterations of gut microbiota in patients with stroke. Nutr Metab Cardiovasc Dis 31:3434–3448. https://doi.org/10.1016/j.numecd.2021.08.045

    Article  CAS  PubMed  Google Scholar 

  120. Liu Y, Kong C, Gong L, Zhang X, Zhu Y, Wang H, Qu X, Gao R, Yin F, Liu X, Qin H (2020) The association of post-stroke cognitive impairment and gut microbiota and its corresponding metabolites. J Alzheimers Dis 73:1455–1466. https://doi.org/10.3233/JAD-191066

    Article  PubMed  Google Scholar 

  121. Xu K, Gao X, Xia G, Chen M, Zeng N, Wang S, You C, Tian X, Di H, Tang W, Li P, Wang H, Zeng X, Tan C, Meng F, Li H, He Y, Zhou H, Yin J (2021) Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut. https://doi.org/10.1136/gutjnl-2020-323263

    Article  PubMed  Google Scholar 

  122. Zhao L, Wang C, Peng S, Zhu X, Zhang Z, Zhao Y, Zhang J, Zhao G, Zhang T, Heng X, Zhang L (2022) Pivotal interplays between fecal metabolome and gut microbiome reveal functional signatures in cerebral ischemic stroke. J Transl Med 20:459. https://doi.org/10.1186/s12967-022-03669-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ling Y, Gong T, Zhang J, Gu Q, Gao X, Weng X, Liu J, Sun J (2020) Gut microbiome signatures are biomarkers for cognitive impairment in patients with ischemic stroke. Front Aging Neurosci 12:511562. https://doi.org/10.3389/fnagi.2020.511562

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zeng X, Gao X, Peng Y, Wu Q, Zhu J, Tan C, Xia G, You C, Xu R, Pan S, Zhou H, He Y, Yin J (2019) Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol 9:4. https://doi.org/10.3389/fcimb.2019.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun H, Gu M, Li Z, Chen X, Zhou J (2021) Gut microbiota dysbiosis in acute ischemic stroke associated with 3-month unfavorable outcome. Front Neurol 12:799222. https://doi.org/10.3389/fneur.2021.799222

    Article  PubMed  Google Scholar 

  126. Gu M, Chen N, Sun H, Li Z, Chen X, Zhou J, Zhang Y (2021) Roseburia abundance associates with severity, evolution and outcome of acute ischemic stroke. Front Cell Infect Microbiol 11:669322. https://doi.org/10.3389/fcimb.2021.669322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xiang L, Lou Y, Liu L, Liu Y, Zhang W, Deng J, Guan Y, She M, You X, Liu M, Li H, Xu X, Liu F, Cai X (2020) Gut microbiotic features aiding the diagnosis of acute ischemic stroke. Front Cell Infect Microbiol 10:587284. https://doi.org/10.3389/fcimb.2020.587284

    Article  PubMed  PubMed Central  Google Scholar 

  128. Haak BW, Westendorp WF, van Engelen TSR, Brands X, Brouwer MC, Vermeij JD, Hugenholtz F, Verhoeven A, Derks RJ, Giera M, Nederkoorn PJ, de Vos WM, van de Beek D, Wiersinga WJ (2021) Disruptions of anaerobic gut bacteria are associated with stroke and post-stroke infection: a prospective case-control study. Transl Stroke Res 12:581–592. https://doi.org/10.1007/s12975-020-00863-4

    Article  CAS  PubMed  Google Scholar 

  129. Li T, Sun Q, Feng L, Yan D, Wang B, Li M, Xiong X, Ma D, Gao Y (2022) Uncovering the characteristics of the gut microbiota in patients with acute ischemic stroke and phlegm-heat syndrome. PLoS One 17:e0276598. https://doi.org/10.1371/journal.pone.0276598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ling Y, Gu Q, Zhang J, Gong T, Weng X, Liu J, Sun J (2020) Structural change of gut microbiota in patients with post-stroke comorbid cognitive impairment and depression and its correlation with clinical features. J Alzheimers Dis 77:1595–1608. https://doi.org/10.3233/JAD-200315

    Article  CAS  PubMed  Google Scholar 

  131. Wu W, Sun Y, Luo N, Cheng C, Jiang C, Yu Q, Cheng S, Ge J (2021) Integrated 16S rRNA gene sequencing and LC-MS analysis revealed the interplay between gut microbiota and plasma metabolites in rats with ischemic stroke. J Mol Neurosci 71:2095–2106. https://doi.org/10.1007/s12031-021-01828-4

    Article  CAS  PubMed  Google Scholar 

  132. Wang H, Zhang M, Li J, Liang J, Yang M, Xia G, Ren Y, Zhou H, Wu Q, He Y, Yin J (2022) Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate. J Neuroinflammation 19:76. https://doi.org/10.1186/s12974-022-02435-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tan C, Wu Q, Wang H, Gao X, Xu R, Cui Z, Zhu J, Zeng X, Zhou H, He Y, Yin J (2021) Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. JPEN J Parenter Enteral Nutr 45:518–529. https://doi.org/10.1002/jpen.1861

    Article  CAS  PubMed  Google Scholar 

  134. Chen R, Xu Y, Wu P, Zhou H, Lasanajak Y, Fang Y, Tang L, Ye L, Li X, Cai Z, Zhao J (2019) Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 148:104403. https://doi.org/10.1016/j.phrs.2019.104403

    Article  CAS  PubMed  Google Scholar 

  135. Li N, Wang X, Sun C, Wu X, Lu M, Si Y, Ye X, Wang T, Yu X, Zhao X, Wei N, Wang X (2019) Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 19:191. https://doi.org/10.1186/s12866-019-1552-1

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yu X, Fu X, Wu X, Tang W, Xu L, Hu L, Xu C, Zhou H, Zhou G, Li J, Cao S, Liu J, Yan F, Wang L, Liu F, Chen G (2021) Metformin alleviates neuroinflammation following intracerebral hemorrhage in mice by regulating microglia/macrophage phenotype in a gut microbiota-dependent manner. Front Cell Neurosci 15:789471. https://doi.org/10.3389/fncel.2021.789471

    Article  CAS  PubMed  Google Scholar 

  137. Xiao L, Zheng H, Li J, Zeng M, He D, Liang J, Sun K, Luo Y, Li F, Ping B, Yuan W, Zhou H, Wang Q, Sun H (2022) Targeting NLRP3 inflammasome modulates gut microbiota, attenuates corticospinal tract injury and ameliorates neurobehavioral deficits after intracerebral hemorrhage in mice. Biomed Pharmacother 149:112797. https://doi.org/10.1016/j.biopha.2022.112797

    Article  CAS  PubMed  Google Scholar 

  138. Luo J, Chen Y, Tang G, Li Z, Yang X, Shang X, Huang T, Huang G, Wang L, Han Y, Zhou Y, Wang C, Wu B, Guo Q, Gong B, Li M, Wang R, Yang J, Cui W, Zhong J, Zhong LL, Guo J (2022) Gut microbiota composition reflects disease progression, severity and outcome, and dysfunctional immune responses in patients with hypertensive intracerebral hemorrhage. Front Immunol 13:869846. https://doi.org/10.3389/fimmu.2022.869846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu X, Zhou G, Shao B, Zhou H, Xu C, Yan F, Wang L, Chen G, Li J, Fu X (2021) Gut microbiota dysbiosis induced by intracerebral hemorrhage aggravates neuroinflammation in mice. Front Microbiol 12:647304. https://doi.org/10.3389/fmicb.2021.647304

    Article  PubMed  PubMed Central  Google Scholar 

  140. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyas B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158. https://doi.org/10.1126/scitranslmed.3009759

  141. Frohlich EE, Farzi A, Mayerhofer R, Reichmann F, Jacan A, Wagner B, Zinser E, Bordag N, Magnes C, Frohlich E, Kashofer K, Gorkiewicz G, Holzer P (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155. https://doi.org/10.1016/j.bbi.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li K, Wei S, Hu L, Yin X, Mai Y, Jiang C, Peng X, Cao X, Huang Z, Zhou H, Ma G, Liu Z, Li H, Zhao B (2020) Protection of fecal microbiota transplantation in a mouse model of multiple sclerosis. Mediators Inflamm 2020:2058272. https://doi.org/10.1155/2020/2058272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu Q, Zhang Y, Zhang Y, Xia C, Lai Q, Dong Z, Kuang W, Yang C, Su D, Li H, Zhong Z (2020) Potential effects of antibiotic-induced gut microbiome alteration on blood-brain barrier permeability compromise in rhesus monkeys. Ann N Y Acad Sci 1470:14–24. https://doi.org/10.1111/nyas.14312

    Article  CAS  PubMed  Google Scholar 

  144. Nelson JW, Phillips SC, Ganesh BP, Petrosino JF, Durgan DJ, Bryan RM (2021) The gut microbiome contributes to blood-brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB J 35:e21201. https://doi.org/10.1096/fj.202001117R

    Article  CAS  PubMed  Google Scholar 

  145. Shi H, Nelson JW, Phillips S, Petrosino JF, Bryan RM, Durgan DJ (2022) Alterations of the gut microbial community structure and function with aging in the spontaneously hypertensive stroke prone rat. Sci Rep 12:8534. https://doi.org/10.1038/s41598-022-12578-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ji X, Tian L, Niu S, Yao S, Qu C (2022) Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes. Front Aging Neurosci 14:963876. https://doi.org/10.3389/fnagi.2022.963876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Parker A, Fonseca S, Carding SR (2020) Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 11:135–157. https://doi.org/10.1080/19490976.2019.1638722

    Article  CAS  PubMed  Google Scholar 

  148. Laval L, Martin R, Natividad JN, Chain F, Miquel S, Desclee de Maredsous C, Capronnier S, Sokol H, Verdu EF, van Hylckama Vlieg JE, Bermudez-Humaran LG, Smokvina T, Langella P (2015) Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2–165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 6:1–9. https://doi.org/10.4161/19490976.2014.990784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen Z, Xin L, Yang L, Xu M, Li F, Zhou M, Yan T (2023) Butyrate promotes post-stroke outcomes in aged mice via interleukin-22. Exp Neurol 363:114351. https://doi.org/10.1016/j.expneurol.2023.114351

    Article  CAS  PubMed  Google Scholar 

  150. Chen YY, Ye ZS, Xia NG, Xu Y (2022) TMAO as a novel predictor of major adverse vascular events and recurrence in patients with large artery atherosclerotic ischemic stroke. Clin Appl Thromb Hemost 28:10760296221090504. https://doi.org/10.1177/10760296221090503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hoyles L, Pontifex MG, Rodriguez-Ramiro I, Anis-Alavi MA, Jelane KS, Snelling T, Solito E, Fonseca S, Carvalho AL, Carding SR, Muller M, Glen RC, Vauzour D, McArthur S (2021) Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome 9:235. https://doi.org/10.1186/s40168-021-01181-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li C, Wang X, Yan J, Cheng F, Ma X, Chen C, Wang W, Wang Q (2020) Cholic acid protects in vitro neurovascular units against oxygen and glucose deprivation-induced injury through the BDNF-TrkB signaling pathway. Oxid Med Cell Longev 2020:1201624. https://doi.org/10.1155/2020/1201624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, Meabon JS, Wing EE, Morofuji Y, Cook DG, Reed MJ (2015) Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation 12:223. https://doi.org/10.1186/s12974-015-0434-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li T, Zheng LN, Han XH (2020) Fenretinide attenuates lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) and depressive-like behavior in mice by targeting Nrf-2 signaling. Biomed Pharmacother 125:109680. https://doi.org/10.1016/j.biopha.2019.109680

    Article  CAS  PubMed  Google Scholar 

  155. Peng X, Luo Z, He S, Zhang L, Li Y (2021) Blood-brain barrier disruption by lipopolysaccharide and sepsis-associated encephalopathy. Front Cell Infect Microbiol 11:768108. https://doi.org/10.3389/fcimb.2021.768108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, Zhang D (2021) Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 9:226. https://doi.org/10.1186/s40168-021-01107-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, Zhou HW (2015) Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 4. https://doi.org/10.1161/JAHA.115.002699

  158. Fock E, Parnova R (2023) Mechanisms of blood-brain barrier protection by microbiota-derived short-chain fatty acids. Cells 12. https://doi.org/10.3390/cells12040657

  159. Wenzel TJ, Gates EJ, Ranger AL, Klegeris A (2020) Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol Cell Neurosci 105:103493. https://doi.org/10.1016/j.mcn.2020.103493

    Article  CAS  PubMed  Google Scholar 

  160. Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6:55. https://doi.org/10.1186/s40168-018-0439-y

    Article  PubMed  PubMed Central  Google Scholar 

  161. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Charach G, Karniel E, Novikov I, Galin L, Vons S, Grosskopf I, Charach L (2020) Reduced bile acid excretion is an independent risk factor for stroke and mortality: a prospective follow-up study. Atherosclerosis 293:79–85. https://doi.org/10.1016/j.atherosclerosis.2019.12.010

    Article  CAS  PubMed  Google Scholar 

  163. Jia W, Xie G, Jia W (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128. https://doi.org/10.1038/nrgastro.2017.119

    Article  CAS  PubMed  Google Scholar 

  164. Quinn M, McMillin M, Galindo C, Frampton G, Pae HY, DeMorrow S (2014) Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis 46:527–534. https://doi.org/10.1016/j.dld.2014.01.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mertens KL, Kalsbeek A, Soeters MR, Eggink HM (2017) Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci 11:617. https://doi.org/10.3389/fnins.2017.00617

    Article  PubMed  PubMed Central  Google Scholar 

  166. Liu Y, Hou Y, Wang G, Zheng X, Hao H (2020) Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol Metab 31:818–834. https://doi.org/10.1016/j.tem.2020.02.012

    Article  CAS  PubMed  Google Scholar 

  167. Ren R, Lu Q, Sherchan P, Fang Y, Lenahan C, Tang L, Huang Y, Liu R, Zhang JH, Zhang J, Tang J (2021) Inhibition of aryl hydrocarbon receptor attenuates hyperglycemia-induced hematoma expansion in an intracerebral hemorrhage mouse model. J Am Heart Assoc 10:e022701. https://doi.org/10.1161/JAHA.121.022701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lopez NE, Krzyzaniak MJ, Costantini TW, Putnam J, Hageny AM, Eliceiri B, Coimbra R, Bansal V (2012) Vagal nerve stimulation decreases blood-brain barrier disruption after traumatic brain injury. J Trauma Acute Care Surg 72:1562–1566. https://doi.org/10.1097/TA.0b013e3182569875

    Article  PubMed  Google Scholar 

  169. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609, 609 e1–3. https://doi.org/10.1053/j.gastro.2011.04.052

  170. Miranda-Ribera A, Ennamorati M, Serena G, Cetinbas M, Lan J, Sadreyev RI, Jain N, Fasano A, Fiorentino M (2019) Exploiting the zonulin mouse model to establish the role of primary impaired gut barrier function on microbiota composition and immune profiles. Front Immunol 10:2233. https://doi.org/10.3389/fimmu.2019.02233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schweighofer H, Rummel C, Roth J, Rosengarten B (2016) Modulatory effects of vagal stimulation on neurophysiological parameters and the cellular immune response in the rat brain during systemic inflammation. Intensive Care Med Exp 4:19. https://doi.org/10.1186/s40635-016-0091-4

    Article  PubMed  PubMed Central  Google Scholar 

  172. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM, Sears MR, Kollmann T, Investigators CS, Mohn WW, Turvey SE, Finlay BB (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152. https://doi.org/10.1126/scitranslmed.aab2271

  173. Holzer P (2016) Neuropeptides, microbiota, and behavior. Int Rev Neurobiol 131:67–89. https://doi.org/10.1016/bs.irn.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  174. Fasano A (2012) Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci 1258:25–33. https://doi.org/10.1111/j.1749-6632.2012.06538.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Calvani R, Picca A, Lo Monaco MR, Landi F, Bernabei R, Marzetti E (2018) Of microbes and minds: a narrative review on the second brain aging. Front Med (Lausanne) 5:53. https://doi.org/10.3389/fmed.2018.00053

    Article  PubMed  Google Scholar 

  176. Forsythe P, Bienenstock J, Kunze WA (2014) Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol 817:115–133. https://doi.org/10.1007/978-1-4939-0897-4_5

    Article  PubMed  Google Scholar 

  177. Zhang S, Cheng S, Jiang X, Zhang J, Bai L, Qin X, Zou Z, Chen C (2020) Gut-brain communication in hyperfunction of 5-hydroxytryptamine induced by oral zinc oxide nanoparticles exposure in young mice. Food Chem Toxicol 135:110906. https://doi.org/10.1016/j.fct.2019.110906

    Article  CAS  PubMed  Google Scholar 

  178. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C (2014) Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol 817:221–239. https://doi.org/10.1007/978-1-4939-0897-4_10

    Article  CAS  PubMed  Google Scholar 

  179. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, Dichgans M, Liesz A (2016) Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 36:7428–7440. https://doi.org/10.1523/JNEUROSCI.1114-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lukiw WJ (2016) Bacteroides fragilis lipopolysaccharide and inflammatory signaling in Alzheimer’s disease. Front Microbiol 7:1544. https://doi.org/10.3389/fmicb.2016.01544

    Article  PubMed  PubMed Central  Google Scholar 

  181. Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16:180. https://doi.org/10.1186/s12974-019-1564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza-Salamanca D, Mora-Munoz L (2017) Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 10:427. https://doi.org/10.3389/fnmol.2017.00427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rosciszewski G, Cadena V, Murta V, Lukin J, Villarreal A, Roger T, Ramos AJ (2018) Toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells-2 (TREM-2) activation balance astrocyte polarization into a proinflammatory phenotype. Mol Neurobiol 55:3875–3888. https://doi.org/10.1007/s12035-017-0618-z

    Article  CAS  PubMed  Google Scholar 

  185. Anderson G, Rodriguez M, Reiter RJ (2019) Multiple sclerosis: melatonin, orexin, and ceramide interact with platelet activation coagulation factors and gut-microbiome-derived butyrate in the circadian dysregulation of mitochondria in glia and immune cells. Int J Mol Sci 20. https://doi.org/10.3390/ijms20215500

  186. Benakis C, Llovera G, Liesz A (2018) The meningeal and choroidal infiltration routes for leukocytes in stroke. Ther Adv Neurol Disord 11:1756286418783708. https://doi.org/10.1177/1756286418783708

    Article  PubMed  PubMed Central  Google Scholar 

  187. Cheng W, Zhao Q, Li C, Xu Y (2022) Neuroinflammation and brain-peripheral interaction in ischemic stroke: a narrative review. Front Immunol 13:1080737. https://doi.org/10.3389/fimmu.2022.1080737

    Article  CAS  PubMed  Google Scholar 

  188. Yuan S, Liu Z, Xu Z, Liu J, Zhang J (2020) High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 13:91. https://doi.org/10.1186/s13045-020-00920-3

    Article  PubMed  PubMed Central  Google Scholar 

  189. Andersson U, Yang H, Harris H (2018) High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol 38:40–48. https://doi.org/10.1016/j.smim.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  190. Chen Y, Sun H, Bai Y, Zhi F (2019) Gut dysbiosis-derived exosomes trigger hepatic steatosis by transiting HMGB1 from intestinal to liver in mice. Biochem Biophys Res Commun 509:767–772. https://doi.org/10.1016/j.bbrc.2018.12.180

    Article  CAS  PubMed  Google Scholar 

  191. Burgueno JF, Abreu MT (2020) Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol 17:263–278. https://doi.org/10.1038/s41575-019-0261-4

    Article  CAS  PubMed  Google Scholar 

  192. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16:142. https://doi.org/10.1186/s12974-019-1516-2

    Article  PubMed  PubMed Central  Google Scholar 

  193. Skelly DT, Hennessy E, Dansereau MA, Cunningham C (2013) A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, [corrected] TNF-alpha and IL-6 challenges in C57BL/6 mice. PLoS One 8:e69123. https://doi.org/10.1371/journal.pone.0069123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Alvarez AM, DeOcesano-Pereira C, Teixeira C, Moreira V (2020) IL-1beta and TNF-alpha modulation of proliferated and committed myoblasts: IL-6 and COX-2-derived prostaglandins as key actors in the mechanisms involved. Cells 9. https://doi.org/10.3390/cells9092005

  195. You L, Jiang H (2021) Cabergoline possesses a beneficial effect on blood-brain barrier (BBB) integrity against lipopolysaccharide (LPS). Bioengineered 12:8358–8369. https://doi.org/10.1080/21655979.2021.1987066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tian C, Stewart T, Hong Z, Guo Z, Aro P, Soltys D, Pan C, Peskind ER, Zabetian CP, Shaw LM, Galasko D, Quinn JF, Shi M, Zhang J, Alzheimer’s disease neuroimaging I, (2022) blood extracellular vesicles carrying synaptic function- and brain-related proteins as potential biomarkers for Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.12723

    Article  PubMed  Google Scholar 

  197. Ju Y, Hu Y, Yang P, Xie X, Fang B (2023) Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio 18:100522. https://doi.org/10.1016/j.mtbio.2022.100522

    Article  CAS  PubMed  Google Scholar 

  198. Ruan J, Miao X, Schluter D, Lin L, Wang X (2021) Extracellular vesicles in neuroinflammation: pathogenesis, diagnosis, and therapy. Mol Ther 29:1946–1957. https://doi.org/10.1016/j.ymthe.2021.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank BioRender.com. The figure in this manuscript was created with BioRender.com.

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515030045) and the Presidential Foundation of Zhujiang Hospital, Southern Medical University (yzjj2022ms4).

Author information

Authors and Affiliations

Authors

Contributions

Haitao Sun conceived the topic and designed the outline of this review; Meiqin Zeng drafted the manuscript and contributed to the literature review and manuscript writing; Jianhao Liang prepared the figure; Meichang Peng critically revised the manuscript. All authors read and approved the final manuscript. The work presented here was carried out in collaboration among all authors.

Corresponding author

Correspondence to Haitao Sun.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Peng, M., Liang, J. et al. The Role of Gut Microbiota in Blood–Brain Barrier Disruption after Stroke. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03512-7

Keywords

Navigation