Skip to main content
Log in

Prenatal Stress Induces Long-Term Behavioral Sex-Dependent Changes in Rats Offspring: the Role of the HPA Axis and Epigenetics

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Preclinical genetic studies have related stress early exposures with changes in gene regulatory mechanisms, including epigenetic alterations, such as modifications of DNA methylation, histone deacetylation, and histones acetylation. This study evaluates the effects of prenatal stress on the behavior, hypothalamus-pituitary-adrenal (HPA)-axis, and epigenetic parameters in stressed dams and their offspring. The rats were subjected to a protocol of chronic unpredictable mild stress on the fourteenth day of pregnancy until the birth of offspring. After birth, maternal care was evaluated for six days. Following weaning, the locomotor and depressive-like behaviors of the dams and their offspring (60 days old) were assessed. The HPA axis parameters were evaluated in serum from dams and offspring, and epigenetic parameters (histone acetyltransferase (HAT), histone deacetylase (HDAC), DNA methyltransferase (DNMT) activities, and the levels of histone H3 acetylated at lysine residue 9 (H3K9ac) and histone 3 acetylated at lysine residue 14 (H3K14ac)) were assessed in dams’ and offspring’ brains. Prenatal stress did not significantly influence maternal care; however, it induced manic behavior in female offspring. These behavioral alterations in the offspring were accompanied by hyperactivity of the HPA-axis, epigenetic adaptations in the activity of HDAC and DNMT, and acetylation in the histones H3K9 and H3K14. In addition, the prenatal stressed female offspring showed increased levels of ACTH compared to their male counterpart. Our findings reinforce the impact of prenatal stress on behavior, stress response, and epigenetic profile of offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Lautarescu A, Craig MC, Glover V (2020) Prenatal stress: Effects on fetal and child brain development. Int Rev Neurobiol 150:17–40. https://doi.org/10.1016/bs.irn.2019.11.002

  2. Wang S, Ding C, Dou C, Zhu Z, Zhang D, Yi Q, Wu H, Xie L et al. (2022) Associations between maternal prenatal depression and neonatal behavior and brain function - evidence from the functional near-infrared spectroscopy. Psychoneuroendocrinology 146:105896. https://doi.org/10.1016/j.psyneuen.2022.105896

    Article  PubMed  Google Scholar 

  3. Class QA, Abel KM, Khashan AS, Rickert ME, Dalman C, Larsson H, Hultman CM, Långström N et al.  (2014) Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychol Med 44(1):71–84. https://doi.org/10.1017/S0033291713000780

    Article  CAS  PubMed  Google Scholar 

  4. Guo C, He P, Song X, Zheng X (2019) Long-term effects of prenatal exposure to earthquake on adult schizophrenia. Br J Psychiatry 215(6):730–735. https://doi.org/10.1192/bjp.2019.114

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, Ji H, Wang J et al. (2019) Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res 359:304–311. https://doi.org/10.1016/j.bbr.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  6. Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, Hoyer D, Roseboom T, Räikkönen K et al. (2020) Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neurosci Biobehav Rev 117:26–64. https://doi.org/10.1016/j.neubiorev.2017.07.003

    Article  PubMed  Google Scholar 

  7. Glover V, Hill J (2012) Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: an evolutionary perspective. Physiol Behav 106(5):736–740. https://doi.org/10.1016/j.physbeh.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  8. Glover V, Bergman K, Sarka P, O’Connor TG (2009) Association between maternal and amniotic fluid cortisol is moderated by maternal anxiety. Psychoneuroendocrinology 34(3):430–5. https://doi.org/10.1016/j.psyneuen.2008.10.005

  9. Spiers JG, Chen HJ, Sernia C, Lavidis NA (2015) Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 8:456. https://doi.org/10.3389/fnins.2014.00456

    Article  PubMed  PubMed Central  Google Scholar 

  10. Devlin AM, Brain U, Austin J, Oberlander TF (2010) Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS ONE 5(8):e12201. https://doi.org/10.1371/journal.pone.0012201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garfield L, Mathews HL, Witek Janusek L (2016) Inflammatory and epigenetic pathways for perinatal depression. Biol Res Nurs 18(3):331–43. https://doi.org/10.1177/1099800415614892

  12. Van Soom A, Peelman L, Holt WV, Fazeli A (2014) An introduction to epigenetics as the link between genotype and environment: a personal view. Reprod Domest Anim 49(Suppl 3):2–10. https://doi.org/10.1111/rda.12341

    Article  CAS  PubMed  Google Scholar 

  13. Huang B, Jiang C, Zhang R (2014) Epigenetics: the language of the cell? Epigenomics 6(1):73–88. https://doi.org/10.2217/epi.13.72

    Article  CAS  PubMed  Google Scholar 

  14. Banta JA, Richards CL (2018) Quantitative epigenetics and evolution. Heredity (Edinb) 121(3):210–224. https://doi.org/10.1038/s41437-018-0114-x

    Article  CAS  PubMed  Google Scholar 

  15. Imran M, Shafiq S, Farooq MA, Naeem MK, Widemann E, Bakhsh A, Jensen KB, Wang RR (2019) Comparative genome-wide analysis and expression profiling of histone acetyltransferase (HAT) gene family in response to hormonal applications, metal and abiotic stresses in cotton. Int J Mol Sci 20(21):5311. https://doi.org/10.3390/ijms20215311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boycheva I, Vassileva V, Iantcheva A (2014) Histone acetyltransferases in plant development and plasticity. Curr Genomics 15(1):28–37. https://doi.org/10.2174/138920291501140306112742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, Kimura H, Kelly DA et al. (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125(Pt 2):411–421. https://doi.org/10.1242/jcs.090639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13:424. https://doi.org/10.1186/1471-2164-13-424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernández-Sánchez A, Baragaño Raneros A, Carvajal Palao R, Sanz AB, Ortiz A, Ortega F, Suárez-Álvarez B, López-Larrea C (2013) DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8 + T and NK cells. Epigenetics 8(1):66–78. https://doi.org/10.4161/epi.23115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiao Y, Wang R, Yang X, Tang K, Jing N (2015) Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 290(4):2508–2520. https://doi.org/10.1369/0022155413506582

  21. Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, Patra SK (2014) Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 62(1):11–33. https://doi.org/10.1369/0022155413506582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lombardi PM, Cole KE, Dowling DP, Christianson DW (2011) Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 21(6):735–743. https://doi.org/10.1016/j.sbi.2011.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen HP, Zhao YT, Zhao TC (2015) Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 20(1–2):35–47. https://doi.org/10.1615/critrevoncog.2015012997

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hannon E, Knox O, Sugden K, Burrage J, Wong CCY, Belsky DW, Corcoran DL, Arseneault L et al. (2018) Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins. PLoS Genet 14(8):e1007544. https://doi.org/10.1371/journal.pgen.1007544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Öztürk KH, Ünal G, Doğuç DK, Toğay VA, Koşar PA, Sezik M (2022) Hypothalamic NR3C1 DNA methylation in rats exposed to prenatal stress. Mol Biol Rep 49(8):7921–7928. https://doi.org/10.1007/s11033-022-07626-4

    Article  CAS  PubMed  Google Scholar 

  26. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105(1):7–17. https://doi.org/10.1016/s0306-4522(01)00171-3

    Article  CAS  PubMed  Google Scholar 

  27. Kinnunen AK, Koenig JI, Bilbe G (2003) Repeated variable prenatal stress alters pre- and postsynaptic gene expression in the rat frontal pole. J Neurochem 86(3):736–748. https://doi.org/10.1046/j.1471-4159.2003.01873.x

    Article  CAS  PubMed  Google Scholar 

  28. Myers MM, Brunelli SA, Squire JM, Shindeldecker RD, Hofer MA (1989) Maternal behavior of SHR rats and its relationship to offspring blood pressures. Dev Psychobiol 22(1):29–53. https://doi.org/10.1002/dev.420220104

    Article  CAS  PubMed  Google Scholar 

  29. Popoola DO, Borrow AP, Sanders JE, Nizhnikov ME, Cameron NM (2015) Can low-level ethanol exposure during pregnancy influence maternal care? An investigation using two strains of rat across two generations. Physiol Behav 148:111–121. https://doi.org/10.1016/j.physbeh.2015.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Broadhurst PL (1960) The place of animal psychology in the development of psychosomatic research. Fortschr Psychosom Med 1:63–69. https://doi.org/10.1159/000386484

    Article  CAS  PubMed  Google Scholar 

  31. Isingrini E, Camus V, Le Guisquet AM, Pingaud M, Dever sS, Belzung C (2010) Association between repeated unpredictable chronic mild stress (UCMS) procedures with a high fat diet: a model of fluoxetine resistance in mice. PLoS One 5(4):e10404. https://doi.org/10.1371/journal.pone.0010404

  32. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167. https://doi.org/10.1016/0165-0270(85)90031-7

    Article  CAS  PubMed  Google Scholar 

  33. Rodgers RJ, Cole JC (1994) The elevated plus-maze: Pharmacology, methodology and ethology. In: Cooper SJ, Hendrie CA (eds) Ethology and psychopharmacology. Wiley, New York, pp 9–43. https://doi.org/10.1016/0165-0270(85)90031-7

  34. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    CAS  PubMed  Google Scholar 

  35. Huizink AC (2012) Prenatal substance use, prenatal stress and offspring behavioural outcomes: considerations for future studies. Nord J Psychiatry 66(2):115–122. https://doi.org/10.3109/08039488.2011.641586

    Article  PubMed  Google Scholar 

  36. Maxwell SD, Fineberg AM, Drabick DA, Murphy SK, Ellman LM (2018) Maternal prenatal stress and other developmental risk factors for adolescent depression: spotlight on sex differences. J Abnorm Child Psychol 46(2):381–397. https://doi.org/10.1007/s10802-017-0299-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192. https://doi.org/10.1146/annurev.neuro.24.1.1161

    Article  CAS  PubMed  Google Scholar 

  38. Del Cerro MC, Pérez-Laso C, Ortega E, Martín JL, Gómez F, Pérez-Izquierdo MA, Segovia S (2010) Maternal care counteracts behavioral effects of prenatal environmental stress in female rats. Behav Brain Res 208(2):593–602. https://doi.org/10.1016/j.bbr.2010.01.003

    Article  PubMed  Google Scholar 

  39. Pérez-Laso C, Ortega E, Martín JL, Pérez-Izquierdo MA, Gómez F, Segovia S, Del Cerro MC (2013) Maternal care interacts with prenatal stress in altering sexual dimorphism in male rats. Horm Behav 64(4):624–633. https://doi.org/10.1016/j.yhbeh.2013.07.009

    Article  PubMed  Google Scholar 

  40. Baker S, Chebli M, Rees S, Lemarec N, Godbout R, Bielajew C (2008) Effects of gestational stress: 1. Evaluation of maternal and juvenile offspring behavior. Brain Res 1213:98–110. https://doi.org/10.1016/j.brainres.2008.03.035

    Article  CAS  PubMed  Google Scholar 

  41. Golub Y, Canneva F, Funke R, Frey S, Distler J, von Hörsten S, Freitag CM, Kratz O et al. (2016) Effects of in utero environment and maternal behavior on neuroendocrine and behavioral alterations in a mouse model of prenatal trauma. Dev Neurobiol 76(11):1254–1265. https://doi.org/10.1002/dneu.22387

    Article  CAS  PubMed  Google Scholar 

  42. Sun X, Zhang T, Zhao Y, Cai E, Zhu H, Liu S (2020) Panaxynol attenuates CUMS-induced anxiety and depressive-like behaviors via regulating neurotransmitters, synapses and the HPA axis in mice. Food Funct 11(2):1235–1244. https://doi.org/10.1039/c9fo03104a

    Article  CAS  PubMed  Google Scholar 

  43. Song L, Wu X, Wang J, Guan Y, Zhang Y, Gong M, Wang Y, Li B (2021) Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain Res Bull 177:81–91. https://doi.org/10.1016/j.brainresbull.2021.09.002

    Article  CAS  PubMed  Google Scholar 

  44. Sharma SR, Gonda X, Dome P, Tarazi FI (2020) What’s Love got to do with it: role of oxytocin in trauma, attachment and resilience. Pharmacol Ther 214:107602. https://doi.org/10.1016/j.pharmthera.2020.107602

    Article  CAS  PubMed  Google Scholar 

  45. Carter CS, Kenkel WM, MacLean EL, Wilson SR, Perkeybile AM, Yee JR, Ferris CF, Nazarloo HP et al. (2020) Is oxytocin “Nature’s Medicine”? Pharmacol Rev 72(4):829–861. https://doi.org/10.1124/pr.120.019398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bealer SL, Lipschitz DL, Ramoz G, Crowley WR (2006) Oxytocin receptor binding in the hypothalamus during gestation in rats. Am J Physiol Regul Integr Comp Physiol 291(1):R53–R58. https://doi.org/10.1152/ajpregu.00766.2005

    Article  CAS  PubMed  Google Scholar 

  47. Liu N, Yang H, Han L, Ma M (2022) Oxytocin in women’s health and disease. Front Endocrinol (Lausanne) 13:786271. https://doi.org/10.3389/fendo.2022.786271

    Article  PubMed  Google Scholar 

  48. Li T, Jia SW, Hou D, Wang X, Li D, Liu Y, Cui D, Liu X et al. (2021) Oxytocin modulation of maternal behavior and its association with immunological activity in rats with cesarean delivery. ASN Neuro 13:17590914211014731. https://doi.org/10.1177/17590914211014731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH et al.  (2010) Oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther REVIEW(5):e138–e156. https://doi.org/10.1111/j.1755-5949.2010.00185.x

    Article  CAS  Google Scholar 

  50. Laloux C, Mairesse J, Van Camp G, Giovine A, Branchi I, Bouret S, Morley-Fletcher S, Bergonzelli G et al. (2012) Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology 37(10):1646–1658. https://doi.org/10.1016/j.psyneuen.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Wang Q, Wang Y, Hu J, Jiang H, Cheng W, Ma Y, Liu M et al. (2016) Duloxetine prevents the effects of prenatal stress on depressive-like and anxiety-like behavior and hippocampal expression of pro-inflammatory cytokines in adult male offspring rats. Int J Dev Neurosci 55:41–48. https://doi.org/10.1016/j.ijdevneu.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  52. Glover V (2015) Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol 10:269–283. https://doi.org/10.1007/978-1-4939-1372-5_13

    Article  PubMed  Google Scholar 

  53. Knight P, Chellian R, Wilson R, Behnood-Rod A, Panunzio S, Bruijnzeel AW (2021) Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav 204:173168. https://doi.org/10.1016/jpbb2021173168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Palumbo MC, Dominguez S, Dong H (2020) Sex differences in hypothalamic-pituitary-adrenal axis regulation after chronic unpredictable stress. Brain Behav 10(4):e01586. https://doi.org/10.1002/brb3.1586

  55. Paris JJ, Frye CA (2011) Juvenile offspring of rats exposed to restraint stress in late gestation have impaired cognitive performance and dysregulated progestogen formation. Stress 14(1):23–32. https://doi.org/10.3109/10253890.2010.512375

  56. Frye CA (2011) Progesterone attenuates depressive behavior of younger and older adult C57/BL6, wildtype, and progesterone receptor knockout mice. Pharmacol Biochem Behav 99(4):525–31. https://doi.org/10.1016/j.pbb.2011.05.024

  57. Sutherland S, Brunwasser SM (2018) Sex differences in vulnerability to prenatal stress: a review of the recent literature. Curr Psychiatry Rep 20(11):102. https://doi.org/10.1007/s11920-018-0961-4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hodes GE, Epperson CN (2019) Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry 86(6):421–432. https://doi.org/10.1016/j.biopsych.2019.04.028

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sandman CA, Glynn LM, Davis EP (2013) Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. J Psychosom Res 75(4):327–335. https://doi.org/10.1016/j.jpsychores.2013.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carpenter T, Grecian SM, Reynolds RM (2017) Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans suggest increased vulnerability in females: a systematic review. J Dev Orig Health Dis 8(2):244–255. https://doi.org/10.1017/S204017441600074X

    Article  CAS  PubMed  Google Scholar 

  61. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475. https://doi.org/10.1038/nrn1683

    Article  CAS  PubMed  Google Scholar 

  62. Fries GR, Vasconcelos-Moreno MP, Gubert C, dos Santos BT, Sartori J, Eisele B, Ferrari P, Fijtman A et al. (2014) Hypothalamic-pituitary-adrenal axis dysfunction and illness progression in bipolar disorder. Int J Neuropsychopharmacol 18(1):pyu043. https://doi.org/10.1093/ijnp/pyu043. Erratum in: Int J Neuropsychopharmacol 2016

  63. Spijker AT, van Rossum EF, Hoencamp E, DeRijk RH, Haffmans J, Blom M, Manenschijn L, Koper JW et al. (2009) Functional polymorphism of the glucocorticoid receptor gene associates with mania and hypomania in bipolar disorder. Bipolar Disord 11(1):95–101. https://doi.org/10.1111/j.1399-5618.2008.00647.x

    Article  CAS  PubMed  Google Scholar 

  64. Tamura M, Sajo M, Kakita A, Matsuki N, Koyama R (2011) Prenatal stress inhibits neuronal maturation through downregulation of mineralocorticoid receptors. J Neurosci 31(32):11505–11514. https://doi.org/10.1523/JNEUROSCI.3447-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benoit JD, Rakic P, Frick KM (2015) Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behav Brain Res 281:1–8. https://doi.org/10.1016/j.bbr.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  66. Grégoire S, Jang SH, Szyf M, Stone LS (2020) Prenatal maternal stress is associated with increased sensitivity to neuropathic pain and sex-specific changes in supraspinal mRNA expression of epigenetic- and stress-related genes in adulthood. Behav Brain Res 380:112396. https://doi.org/10.1016/j.bbr.2019.112396

    Article  CAS  PubMed  Google Scholar 

  67. Palacios-García I, Lara-Vásquez A, Montiel JF, Díaz-Véliz GF, Sepúlveda H, Utreras E, Montecino M, González-Billault C et al. (2015) Prenatal stress down-regulates reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS ONE 10(2):e0117680. https://doi.org/10.1371/journal.pone.0117680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G et al. (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57(11):1061–1069. https://doi.org/10.1001/archpsyc.57.11.1061

    Article  CAS  PubMed  Google Scholar 

  69. Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4(6):496–505. https://doi.org/10.1038/nrn1113

    Article  CAS  PubMed  Google Scholar 

  70. González-Billault C, Río D, Ureña JA, Jiménez-Mateos JM, Barallobre EM, Pascual MJ, Pujadas M, Simó L et al. (2005) A role of MAP1B in Reelin-dependent neuronal migration. Cereb Cortex 15(8):1134–1145. https://doi.org/10.1093/cercor/bhh213

    Article  PubMed  Google Scholar 

  71. Dandekar MP, Valvassori SS, Dal-Pont GC, Quevedo J (2018) Glycogen synthase Kinase-3β as a putative therapeutic target for bipolar disorder. Curr Drug Metab 19(8):663–673. https://doi.org/10.2174/1389200219666171227203737

    Article  CAS  PubMed  Google Scholar 

  72. Phillips NLH, Roth TL (2019) Animal models and their contribution to our understanding of the relationship between environments, epigenetic modifications, and behavior. Genes (Basel) 10(1):1–15. https://doi.org/10.3390/genes10010047

    Article  CAS  Google Scholar 

  73. Ganai SA, Banday S, Farooq Z, Altaf M (2016) Modulating epigenetic HAT activity for reinstating acetylation homeostasis: a promising therapeutic strategy for neurological disorders. Pharmacol Ther 166:106–122. https://doi.org/10.1016/j.pharmthera.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  74. Demyanenko S, Sharifulina S (2021) The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses. Int J Mol Sci 22(15):7947. https://doi.org/10.3390/ijms22157947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dang S, Lu Y, Su Q, Lin T, Zhang X, Zhang H, Zhang J, Zhang L et al. (2018) H3K9 acetylation of Tph2 involved in depression-like behavior in male, but not female, juvenile offspring rat induced by prenatal stress. Neuroscience 381:138–148. https://doi.org/10.1016/j.neuroscience.2018.03.043

    Article  CAS  PubMed  Google Scholar 

  76. Li H-Y, Jiang Q-S, Fu X-Y, Jiang X-H (2017) Abnormal modification of histone acetylation involved in depression-like behaviors of rats induced by chronically unpredicted stress. NeuroReport 28(16):1054–1060. https://doi.org/10.1097/wnr.0000000000000879

    Article  CAS  PubMed  Google Scholar 

  77. Bagot RC, Labonté B, Peña CJ, Nestler EJ (2014) Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin Neurosci 16(3):281–295. https://doi.org/10.31887/DCNS.2014.16.3/rbagot

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sun H, Kennedy PJ, Nestler EJ (2013) Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38(1):124–137

    Article  CAS  PubMed  Google Scholar 

  79. Zhao J, Niu C, Wang J, Yang H, Du Y, Wei L, Li C (2018) The depressive-like behaviors of chronic unpredictable mild stress-treated mice, ameliorated by tibetan medicine Zuotai: involvement in the hypothalamic-pituitary-adrenal (HPA) axis pathway. Neuropsychiatr Dis Treat 14:129–141. https://doi.org/10.2147/NDT.S151107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge CNPq, CAPES, FAPESC and Instituto Cérebro e Mente for the support during the development of the present study.

Funding

Translational Psychiatry Program (USA) is funded by a grant from the National Institute of Health/National Institute of Mental Health (1R21MH117636-01A1, to JQ). Center of Excellence on Mood Disorders (USA) is funded by the Pat Rutherford Jr. Chair in Psychiatry, John S. Dunn Foundation and Anne and Don Fizer Foundation Endowment for Depression Research. Translational Psychiatry Laboratory (Brazil) is funded by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), and Instituto Cérebro e Mente. JQ, SSV, and AIZ are CNPq Research Fellows.

Author information

Authors and Affiliations

Authors

Contributions

Samira S. Valvassori, Alexandra I. Zugno, and João Quevedo contributed to design and development; methodological design; supervision (responsible for organizing and executing the project); analysis/interpretation and critical review. Gabriel R. Fries contribute to critical review. Taise Possamai-Della, Jorge M. Aguiar-Geraldo, Jefté Peper-Nascimento and José H. Cararo performed animal experimentation, statistical analyzes, contributed to the analysis/interpretation, literature survey, and writing.

Corresponding author

Correspondence to Samira S. Valvassori.

Ethics declarations

Ethics Approval

All experiments were approved by the local ethics committee Comissão de Ética no Uso de Animais (CEUA) from UNESC under protocol number 014/2018. In addition, we followed the Conselho Nacional de Controle de Experimentação Animal (CONCEA) recommendations for animal care.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

JQ received clinical research support from LivaNova; has speaker bureau membership with Myriad Neuroscience, Janssen Pharmaceuticals, and Abbvie; is consultant for Eurofarma; is stockholder at Instituto de Neurociencias Dr. Joao Quevedo; and receives copyrights from Artmed Editora, Artmed Panamericana, and Elsevier/Academic Press. All other authors have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(xlsx 63.9 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Possamai-Della, T., Cararo, J.H., Aguiar-Geraldo, J.M. et al. Prenatal Stress Induces Long-Term Behavioral Sex-Dependent Changes in Rats Offspring: the Role of the HPA Axis and Epigenetics. Mol Neurobiol 60, 5013–5033 (2023). https://doi.org/10.1007/s12035-023-03348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03348-1

Keywords

Navigation