Skip to main content
Log in

Activity-Dependent Differential Regulation of Auts2 Isoforms In Vitro and In Vivo

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder of unknown cause, although one hypothesis suggests a potential imbalance between excitation and inhibition that leads to changes in neuronal activity and a disturbance in the brain network. However, the mechanisms through which neuronal activity contributes to the development of ASD remain largely unexplained. In this study, we described that neuronal activity at the transcriptional and translational levels regulated the expression of Auts2 isoforms. The prolonged stimulation of cultured cortical neurons significantly reduced the auts2 transcripts, accompanied by the decrease of FL-Auts2 protein, as well as one of the short isoforms (S-Auts2 var.1). Blocking neuronal activity increased the number of auts2 transcripts but not protein levels. Furthermore, blocking the NMDA receptors during stimulation could partially restore the FL-Auts2 and S-Auts2 var.1 at protein level, but not at mRNA level. Finally, Auts2 expression in the hippocampus was reduced in mice exposed to an enriched environment, a behavior paradigm designed to increase the brain activity through abundant sensory and social stimulations. Thus, our study revealed a novel regulatory effect of neuronal activity on the transcription and translation of ASD-risk gene auts2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets used during current study are available from the corresponding author on reasonable request.

References

  1. Lord C, Charman T, Havdahl A, Carbone P, Anagnostou E, Boyd B et al (2022) The Lancet Commission on the future of care and clinical research in autism [J]. Lancet 399(10321):271–334

    Article  PubMed  Google Scholar 

  2. Association AP (2015) Neurodevelopmental disorders: DSM-5® selections. American Psychiatric Pub

  3. Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems [J]. Genes Brain Behav 2(5):255–267

    Article  CAS  PubMed  Google Scholar 

  4. Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders [J]. Neuron 87(4):684–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction [J]. Nature 477(7363):171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes [J]. Nature 468(7321):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL (2016) Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B(-/-) mice [J]. Nat Neurosci 19(5):716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson JR, Bartley AF, Hays SA, Huber KM (2008) Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome [J]. J Neurophysiol 100(5):2615–2626

    Article  PubMed  PubMed Central  Google Scholar 

  9. Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong ASO, Kauvar I et al (2017) Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice [J]. Sci Transl Med 9(401)

  10. Antoine MW, Langberg T, Schnepel P, Feldman DE (2019) Increased excitation-inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models [J]. Neuron 101(4):648–61.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL (2013) Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis [J]. Neuron 78(3):510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders [J]. Nature 466(7304):368–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation [J]. Science 302(5646):890–893

    Article  CAS  PubMed  Google Scholar 

  14. Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC et al (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 [J]. Science 302(5646):885–889

    Article  CAS  PubMed  Google Scholar 

  15. Bloodgood BL, Sharma N, Browne HA, Trepman AZ, Greenberg ME (2013) The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition [J]. Nature 503(7474):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beunders G, Voorhoeve E, Golzio C, Pardo LM, Rosenfeld JA, Talkowski ME et al (2013) Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus [J]. Am J Hum Genet 92(2):210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalscheuer VM, FitzPatrick D, Tommerup N, Bugge M, Niebuhr E, Neumann LM et al (2007) Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation [J]. Hum Genet 121(3–4):501–509

    Article  PubMed  Google Scholar 

  18. Jolley A, Corbett M, McGregor L, Waters W, Brown S, Nicholl J et al (2013) De novo intragenic deletion of the autism susceptibility candidate 2 (AUTS2) gene in a patient with developmental delay: a case report and literature review [J]. Am J Med Genet A. 161a(6):1508–12

    Article  PubMed  Google Scholar 

  19. Oksenberg N, Ahituv N (2013) The role of AUTS2 in neurodevelopment and human evolution [J]. Trends Genet 29(10):600–608

    Article  CAS  PubMed  Google Scholar 

  20. Monderer-Rothkoff G, Tal N, Risman M, Shani O, Nissim-Rafinia M, Malki-Feldman L et al (2021) AUTS2 isoforms control neuronal differentiation [J]. Mol Psychiatry 26(2):666–681

    Article  PubMed  Google Scholar 

  21. Hori K, Nagai T, Shan W, Sakamoto A, Taya S, Hashimoto R et al (2014) Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis [J]. Cell Rep 9(6):2166–2179

    Article  CAS  PubMed  Google Scholar 

  22. Hori K, Yamashiro K, Nagai T, Shan W, Egusa SF, Shimaoka K et al (2020) AUTS2 regulation of synapses for proper synaptic inputs and social communication [J]. iScience. 23(6):101183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bedogni F, Hodge RD, Nelson BR, Frederick EA, Shiba N, Daza RA et al (2010) Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology [J]. Gene Expr Patterns 10(1):9–15

    Article  CAS  PubMed  Google Scholar 

  24. Gao Z, Lee P, Stafford JM, von Schimmelmann M, Schaefer A, Reinberg D (2014) An AUTS2-Polycomb complex activates gene expression in the CNS [J]. Nature 516(7531):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oksenberg N, Stevison L, Wall JD, Ahituv N (2013) Function and regulation of AUTS2, a gene implicated in autism and human evolution [J]. PLoS Genet 9(1):e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Sun X, You Y, Li Q, Wei C, Zhao L et al (2022) Auts2 deletion involves in DG hypoplasia and social recognition deficit: the developmental and neural circuit mechanisms [J]. Sci Adv. 8(9):eabk1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamashiro K, Hori K, Lai ESK, Aoki R, Shimaoka K, Arimura N et al (2020) AUTS2 governs cerebellar development, Purkinje cell maturation, motor function and social communication [J]. iScience. 23(12):101820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schaukowitch K, Reese AL, Kim SK, Kilaru G, Joo JY, Kavalali ET et al (2017) An intrinsic transcriptional program underlying synaptic scaling during activity suppression [J]. Cell Rep 18(6):1512–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. West AE, Greenberg ME (2011) Neuronal activity-regulated gene transcription in synapse development and cognitive function [J]. Cold Spring Harb Perspect Biol. 3(6):a005744

    Article  PubMed  PubMed Central  Google Scholar 

  30. Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system [J]. Annu Rev Neurosci 31:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yap EL, Greenberg ME (2018) Activity-regulated transcription: bridging the gap between neural activity and behavior [J]. Neuron 100(2):330–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pang W, Yi X, Li L, Liu L, Xiang W, Xiao L (2021) Untangle the multi-facet functions of Auts2 as an entry point to understand neurodevelopmental disorders [J]. Front Psychiatry 12:580433

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ameur A, Zaghlool A, Halvardson J et al (2011) Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain [J]. Nat Struct Mol Biol 18(12):1435–1440

    Article  CAS  PubMed  Google Scholar 

  34. Wu CH, Tatavarty V, Jean Beltran PM et al (2022) A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling [J]. Elife 26(11):e74277

    Article  Google Scholar 

  35. Djakovic SN, Schwarz LA, Barylko B et al (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II [J]. J Biol Chem 284(39):26655–26665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramachandran KV, Fu JM, Schaffer TB et al (2018) Activity-dependent degradation of the nascentome by the neuronal membrane proteasome [J]. Mol Cell 71(1):169-177.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder [J]. Lancet 392(10146):508–520

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mauger O, Lemoine F, Scheiffele P (2016) Targeted intron retention and excision for rapid gene regulation in response to neuronal activity [J]. Neuron 92(6):1266–1278

    Article  CAS  PubMed  Google Scholar 

  39. Kao SH, Wang WL, Chen CY et al (2015) Analysis of protein stability by the cycloheximide chase assay [J]. Bio Protoc 5(1):e1374

    Article  PubMed  Google Scholar 

  40. Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y et al (2018) Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis [J]. Cell 174(4):856–69.e17

    Article  CAS  PubMed  Google Scholar 

  41. Yang Y, Willis TL, Button RW, Strang CJ, Fu Y, Wen X et al (2019) Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response [J]. Nat Commun 10(1):3759

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heim JB, Squirewell EJ, Neu A, Zocher G, Sominidi-Damodaran S, Wyles SP et al (2017) Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix [J]. Proc Natl Acad Sci U S A 114(15):3933–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Feng Shi and Dr. Wen Shilei for kind suggestions to our manuscript and experimental techniques.

Funding

This study is supported by the National Natural Science Foundation of China (31960170) and the Hainan Province Science and Technology Special Fund (ZDYF2020216) to L.X., the Hainan Province Science and Technology Special Fund (ZDYF2021SHFZ088) and Hainan Major Science and Technology Projects (ZDKJ2019010) to W.X., the Natural Science Foundation of Hainan Province (821QN1001) to W.B.P., and the Hainan Graduate Students Innovation Projects (Qhys2021-357) to M.J.W. and (Qhys2021-355) to Q.S.B.. The study also received financial support from the Hainan Province Clinical Medical Center Grant (QWYH202175) and the Excellent Talent Team of Hainan Province (QRCBT202121).

Author information

Authors and Affiliations

Authors

Contributions

L.X. and W.X. designed the study. L.X., W.X., and W.B.P. wrote the paper. W.B.P. and M.J.W. performed most of the experiments, including neuronal culture, qPCR, Wes Assay, and enriched environmental paradigm. Q.S.B., H.A.L., and Q.L.Z. participated in the neuronal culture experiments. X.S.Y. helped with the qPCR experiments. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Wei Xiang or Le Xiao.

Ethics declarations

Ethics Approval

All animal experiments were performed according to the Ethics Committee of Hainan Medical University (HYLL-2022–259) and conformed to the ethical principles of welfare of laboratory animals.

Consent to Participate

This study did not involve human subjects.

Consent for Publication

This study did not involve patients.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenbin Pang and Meijuan Wang are the co-first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

Representative amplification curves and agarose gel image of auts2 qPCR products. A. Representative amplification curves from qPCR experiments of auts2 transcripts. RFU, Relative fluorescence units. B. A representative agarose gel image of auts2 qPCR products. Predicted band sizes: FL-auts2: 165 bp; Total auts2: 107 bp; GAPDH: 183 bp. (PNG 57 kb)

High resolution image (TIF 2078 kb)

Supplementary Figure 2.

The expression of c-fos after various durations of KCl stimulation. A. Level of c-fos transcripts in cultured neurons, with or without KCl incubation of 2 h, 6 h and 12 h. Each symbol represents one biological replicate (n=7). ***p<0.001, *p<0.05. The p-values were determined by two-way ANOVA and Sidak’s multiple comparisons test. B. The c-fos mRNA level with or without KCl incubation for the indicated durations. C-E. Level of c-fos proteins in cultured neurons, with or without KCl incubation for 2 h (C), 6 h (D) and 12 h (E), detected by Wes Assay. Upper panels: Example images of Wes Assay. Lower panels: Quantitative analysis. F. Level of c-fos proteins with or without KCl incubation for the indicated durations. Data are represented as mean ± SD. Each symbol represents one biological replicate (n=5). ***p<0.001, *p<0.05. The p-values were determined by unpaired student’s t test. (PNG 161 kb)

High resolution image (TIF 2778 kb)

Supplementary Figure 3.

The level of Auts2 transcripts in the hippocampus and cortex after stimulation in vivo. A-C. Level of c-fos (A), FL-auts2 (B) and total auts2 (C) transcripts from the hippocampi (HP) of EE mice and SH mice. Each symbol represents one biological replicate (n=4 or 3). **p<0.01. The p-values were determined by unpaired student’s t test. D-F. Level of c-fos (D), FL-auts2 (E) and total auts2 (F) transcripts from the cortices (Cx) of EE mice and SH mice. One of the SH points was normalized to 1. Data are represented as mean ± SD. Each symbol represents one biological replicate (n=4 or 3). *p<0.05. The p-values were determined by unpaired student’s t test. (PNG 57.8 kb)

High resolution image (TIF 2874 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, W., Wang, M., Bi, Q. et al. Activity-Dependent Differential Regulation of Auts2 Isoforms In Vitro and In Vivo. Mol Neurobiol 60, 2973–2985 (2023). https://doi.org/10.1007/s12035-023-03241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03241-x

Keywords

Navigation