Skip to main content

Advertisement

Log in

Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Data have been deposited to the CSIR-IITR repository, which could be obtained from the corresponding author when needed.

References

  1. Medda N, Patra R, Ghosh TK, Maiti S (2020) Neurotoxic mechanism of arsenic: synergistic effect of mitochondrial instability, oxidative stress, and hormonal-neurotransmitter impairment. Biol Trace Elem Res 198(1):8–15. https://doi.org/10.1007/s12011-020-02044-8

    Article  CAS  PubMed  Google Scholar 

  2. Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S (2017) From the cover: arsenic induces hippocampal neuronal apoptosis and cognitive impairments via an up-regulated BMP2/Smad-dependent reduced BDNF/TrkB signaling in rats. Toxicol Sci 159(1):137–158. https://doi.org/10.1093/toxsci/kfx124

    Article  CAS  PubMed  Google Scholar 

  3. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118(2):586–601. https://doi.org/10.1093/toxsci/kfq266

    Article  CAS  PubMed  Google Scholar 

  4. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363. https://doi.org/10.3389/fncel.2019.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu PZ, Nusslock R (2018) Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 12:52. https://doi.org/10.3389/fnins.2018.00052

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ledonne A, Mercuri NB (2019) On the modulatory roles of neuregulins/ErbB signaling on synaptic plasticity. Int J Mol Sci 21 (1). doi:https://doi.org/10.3390/ijms21010275

  7. Huang W, Meng F, Cao J, Liu X, Zhang J, Li M (2017) Neuroprotective role of exogenous brain-derived neurotrophic factor in hypoxia-hypoglycemia-induced hippocampal neuron injury via regulating Trkb/MiR134 signaling. J Mol Neurosci 62(1):35–42. https://doi.org/10.1007/s12031-017-0907-z

    Article  CAS  PubMed  Google Scholar 

  8. Ghadiri T, Vakilzadeh G, Hajali V, Khodagholi F (2019) Progesterone modulates post-traumatic epileptogenesis through regulation of BDNF-TrkB signaling and cell survival-related pathways in the rat hippocampus. Neurosci Lett 709:134384. https://doi.org/10.1016/j.neulet.2019.134384

    Article  CAS  PubMed  Google Scholar 

  9. Wang DP, Yin H, Lin Q, Fang SP, Shen JH, Wu YF, Su SH, Hai J (2019) Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion. Naunyn Schmiedebergs Arch Pharmacol 392(10):1277–1284. https://doi.org/10.1007/s00210-019-01672-9

    Article  CAS  PubMed  Google Scholar 

  10. Shan Y, Yang F, Tang Z, Bi C, Sun S, Zhang Y, Liu H (2018) Dexmedetomidine ameliorates the neurotoxicity of sevoflurane on the immature brain through the BMP/SMAD signaling pathway. Front Neurosci 12:964. https://doi.org/10.3389/fnins.2018.00964

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sukjamnong S, Thongkorn S, Kanlayaprasit S, Saeliw T, Hussem K, Warayanon W, Hu VW, Tencomnao T, Sarachana T (2020) Prenatal exposure to bisphenol A alters the transcriptome-interactome profiles of genes associated with Alzheimer’s disease in the offspring hippocampus. Sci Rep 10(1):9487. https://doi.org/10.1038/s41598-020-65229-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS (2018) Sex-dependent effects of developmental lead exposure on the brain. Front Genet 9:89. https://doi.org/10.3389/fgene.2018.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneider JS, Anderson DW, Kidd SK, Sobolewski M, Cory-Slechta DA (2016) Sex-dependent effects of lead and prenatal stress on post-translational histone modifications in frontal cortex and hippocampus in the early postnatal brain. Neurotoxicology 54:65–71. https://doi.org/10.1016/j.neuro.2016.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bardullas U, Limon-Pacheco JH, Giordano M, Carrizales L, Mendoza-Trejo MS, Rodriguez VM (2009) Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice. Toxicol Appl Pharmacol 239(2):169–177. https://doi.org/10.1016/j.taap.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  15. Tyler CR, Labrecque MT, Solomon ER, Guo X, Allan AM (2017) Prenatal arsenic exposure alters REST/NRSF and microRNA regulators of embryonic neural stem cell fate in a sex-dependent manner. Neurotoxicol Teratol 59:1–15. https://doi.org/10.1016/j.ntt.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  16. Tyler CR, Hafez AK, Solomon ER, Allan AM (2015) Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain. Toxicol Appl Pharmacol 288(1):40–51. https://doi.org/10.1016/j.taap.2015.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tyler CRS, Smoake JJW, Solomon ER, Villicana E, Caldwell KK, Allan AM (2018) Sex-dependent effects of the histone deacetylase inhibitor, sodium valproate, on reversal learning after developmental arsenic exposure. Front Genet 9:200. https://doi.org/10.3389/fgene.2018.00200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sales S, Ureshino RP, Pereira RT, Luna MS, Pires de Oliveira M, Yamanouye N, Godinho RO, Smaili SS, Porto CS, Abdalla FM (2010) Effects of 17beta-estradiol replacement on the apoptotic effects caused by ovariectomy in the rat hippocampus. Life Sci 86(21–22):832–838. https://doi.org/10.1016/j.lfs.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  19. Yazgan Y, Naziroglu M (2017) Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through TRPA1, TRPM2, and TRPV1 are prevented by 17beta-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol 54(10):7620–7638. https://doi.org/10.1007/s12035-016-0232-5

    Article  CAS  PubMed  Google Scholar 

  20. Djiogue S, Djiyou Djeuda AB, Seke Etet PF, Ketcha Wanda GJM, Djikem Tadah RN, Njamen D (2018) Memory and exploratory behavior impairment in ovariectomized Wistar rats. Behav Brain Funct 14(1):14. https://doi.org/10.1186/s12993-018-0146-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berchtold NC, Kesslak JP, Pike CJ, Adlard PA, Cotman CW (2001) Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J Neurosci 14(12):1992–2002. https://doi.org/10.1046/j.0953-816x.2001.01825.x

    Article  CAS  PubMed  Google Scholar 

  22. Simpkins JW, Green PS, Gridley KE, Singh M, de Fiebre NC, Rajakumar G (1997) Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease. Am J Med 103(3A):19S-25S. https://doi.org/10.1016/s0002-9343(97)00260-x

    Article  CAS  PubMed  Google Scholar 

  23. El-Bakri NK, Islam A, Suliman I, Lindgren U, Winblad B, Adem A (2004) Ovariectomy and gonadal hormone treatment: effects on insulin-like growth factor-1 receptors in the rat brain. Growth Horm IGF Res 14(5):388–393. https://doi.org/10.1016/j.ghir.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  24. Pandey R, Shukla P, Anjum B, Gupta HP, Pal S, Arjaria N, Gupta K, Chattopadhyay N, Sinha RA, Bandyopadhyay S (2020) Estrogen deficiency induces memory loss via altered hippocampal HB-EGF and autophagy. J Endocrinol 244(1):53–70. https://doi.org/10.1530/JOE-19-0197

    Article  PubMed  Google Scholar 

  25. Bisagno V, Bowman R, Luine V (2003) Functional aspects of estrogen neuroprotection. Endocrine 21(1):33–41. https://doi.org/10.1385/endo:21:1:33

    Article  CAS  PubMed  Google Scholar 

  26. Rai NK, Ashok A, Rai A, Tripathi S, Nagar GK, Mitra K, Bandyopadhyay S (2013) Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina. Toxicol Appl Pharmacol 273(2):242–258. https://doi.org/10.1016/j.taap.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  27. Ashok A, Rai NK, Tripathi S, Bandyopadhyay S (2015) Exposure to As-, Cd-, and Pb-mixture induces Abeta, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 143(1):64–80. https://doi.org/10.1093/toxsci/kfu208

    Article  CAS  PubMed  Google Scholar 

  28. Abbas S, Khan K, Khan MP, Nagar GK, Tewari D, Maurya SK, Dubey J, Ansari NG, Bandyopadhyay S, Chattopadhyay N (2013) Developmental exposure to As, Cd, and Pb mixture diminishes skeletal growth and causes osteopenia at maturity via osteoblast and chondrocyte malfunctioning in female rats. Toxicol Sci 134(1):207–220. https://doi.org/10.1093/toxsci/kft093

    Article  CAS  PubMed  Google Scholar 

  29. Mishra J, Vishwakarma J, Malik R, Gupta K, Pandey R, Maurya SK, Garg A, Shukla M, Chattopadhyay N, Bandyopadhyay S (2020) Hypothyroidism induces interleukin-1-dependent autophagy mechanism as a key mediator of hippocampal neuronal apoptosis and cognitive decline in postnatal rats. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02178-9

    Article  PubMed  Google Scholar 

  30. Hara Y, Waters EM, McEwen BS, Morrison JH (2015) Estrogen effects on cognitive and synaptic health over the lifecourse. Physiol Rev 95(3):785–807. https://doi.org/10.1152/physrev.00036.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Green PS, Simpkins JW (2000) Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 18(4–5):347–358. https://doi.org/10.1016/s0736-5748(00)00017-4

    Article  CAS  PubMed  Google Scholar 

  32. Lu M, Wang H, Li XF, Lu X, Cullen WR, Arnold LL, Cohen SM, Le XC (2004) Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood. Chem Res Toxicol 17(12):1733–1742. https://doi.org/10.1021/tx049756s

    Article  CAS  PubMed  Google Scholar 

  33. Cohen SM, Ohnishi T, Arnold LL, Le XC (2007) Arsenic-induced bladder cancer in an animal model. Toxicol Appl Pharmacol 222(3):258–263. https://doi.org/10.1016/j.taap.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  34. Lu M, Wang H, Li XF, Arnold LL, Cohen SM, Le XC (2007) Binding of dimethylarsinous acid to cys-13alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood. Chem Res Toxicol 20(1):27–37. https://doi.org/10.1021/tx060195+

    Article  CAS  PubMed  Google Scholar 

  35. Chen B, Lu X, Shen S, Arnold LL, Cohen SM, Le XC (2013) Arsenic speciation in the blood of arsenite-treated F344 rats. Chem Res Toxicol 26(6):952–962. https://doi.org/10.1021/tx400123q

    Article  CAS  PubMed  Google Scholar 

  36. Huo TG, Li WK, Zhang YH, Yuan J, Gao LY, Yuan Y, Yang HL, Jiang H, Sun GF (2015) Excitotoxicity induced by realgar in the rat hippocampus: the involvement of learning memory injury, dysfunction of glutamate metabolism and NMDA receptors. Mol Neurobiol 51(3):980–994. https://doi.org/10.1007/s12035-014-8753-2

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez-Pena LC, Petrosyan P, Morales M, Gonzalez NB, Gutierrez-Ospina G, Del Razo LM, Gonsebatt ME (2010) Arsenic species, AS3MT amount, and AS3MT gene expression in different brain regions of mouse exposed to arsenite. Environ Res 110(5):428–434. https://doi.org/10.1016/j.envres.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  38. Singh V, Kushwaha S, Gera R, Ansari JA, Mishra J, Dewangan J, Patnaik S, Ghosh D (2019) Sneaky entry of IFNgamma through arsenic-induced leaky blood-brain barrier reduces CD200 expression by microglial pro-inflammatory cytokine. Mol Neurobiol 56(2):1488–1499. https://doi.org/10.1007/s12035-018-1155-0

    Article  CAS  PubMed  Google Scholar 

  39. Li S, Yang L, Zhang Y, Zhang C, Shao J, Liu X, Li Y, Piao F (2017) Taurine ameliorates arsenic-induced apoptosis in the hippocampus of mice through intrinsic pathway. Adv Exp Med Biol 975(Pt 1):183–192. https://doi.org/10.1007/978-94-024-1079-2_16

    Article  CAS  PubMed  Google Scholar 

  40. Sun H, Yang Y, Shao H, Sun W, Gu M, Wang H, Jiang L, Qu L, Sun D, Gao Y (2017) Sodium arsenite-induced learning and memory impairment is associated with endoplasmic reticulum stress-mediated apoptosis in rat hippocampus. Front Mol Neurosci 10:286. https://doi.org/10.3389/fnmol.2017.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Bai C, Guan H, Chen R, Wang X, Wang B, Jin H, Piao F (2015) Subchronic exposure to arsenic induces apoptosis in the hippocampus of the mouse brains through the Bcl-2/Bax pathway. J Occup Health 57(3):212–221. https://doi.org/10.1539/joh.14-0226-OA

    Article  CAS  PubMed  Google Scholar 

  42. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, Arifeen SE, Huda SN, Vahter M (2011) Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 40(6):1593–1604. https://doi.org/10.1093/ije/dyr176

    Article  CAS  PubMed  Google Scholar 

  43. Edoff K, Raciti M, Moors M, Sundstrom E, Ceccatelli S (2017) Gestational age and sex influence the susceptibility of human neural progenitor cells to low levels of MeHg. Neurotox Res 32(4):683–693. https://doi.org/10.1007/s12640-017-9786-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gratacos E, Checa N, Perez-Navarro E, Alberch J (2001) Brain-derived neurotrophic factor (BDNF) mediates bone morphogenetic protein-2 (BMP-2) effects on cultured striatal neurones. J Neurochem 79(4):747–755. https://doi.org/10.1046/j.1471-4159.2001.00570.x

    Article  CAS  PubMed  Google Scholar 

  45. Takatoh J, Wang F (2012) Axonally translated SMADs link up BDNF and retrograde BMP signaling. Neuron 74(1):3–5. https://doi.org/10.1016/j.neuron.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nonner D, Barrett EF, Kaplan P, Barrett JN (2001) Bone morphogenetic proteins (BMP6 and BMP7) enhance the protective effect of neurotrophins on cultured septal cholinergic neurons during hypoglycemia. J Neurochem 77(2):691–699. https://doi.org/10.1046/j.1471-4159.2001.00273.x

    Article  CAS  PubMed  Google Scholar 

  47. Liu B, Zhang Q, Ke C, Xia Z, Luo C, Li Y, Guan X, Cao X, Xu Y, Zhao Y (2019) Ginseng-Angelica-Sansheng-Pulvis boosts neurogenesis against focal cerebral ischemia-induced neurological deficiency. Front Neurosci 13:515. https://doi.org/10.3389/fnins.2019.00515

    Article  PubMed  PubMed Central  Google Scholar 

  48. Galter D, Bottner M, Krieglstein K, Schomig E, Unsicker K (1999) Differential regulation of distinct phenotypic features of serotonergic neurons by bone morphogenetic proteins. Eur J Neurosci 11(7):2444–2452. https://doi.org/10.1046/j.1460-9568.1999.00667.x

    Article  CAS  PubMed  Google Scholar 

  49. Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, Kawaguchi H, Kitagawa M, Takata T, Tsuji K, Kurihara H (2008) Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 283(23):16259–16267. https://doi.org/10.1074/jbc.M800668200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bai L, Chang HM, Zhang L, Zhu YM, Leung PCK (2020) BMP2 increases the production of BDNF through the upregulation of proBDNF and furin expression in human granulosa-lutein cells. FASEB J 34(12):16129–16143. https://doi.org/10.1096/fj.202000940R

    Article  CAS  PubMed  Google Scholar 

  51. Shah TA, Rogers MB (2018) Unanswered questions regarding sex and BMP/TGF-beta signaling. J Dev Biol 6 (2). doi:https://doi.org/10.3390/jdb6020014

  52. Lee W, Ko KR, Kim HK, Lim S, Kim S (2018) Dehydrodiconiferyl alcohol promotes BMP-2-induced osteoblastogenesis through its agonistic effects on estrogen receptor. Biochem Biophys Res Commun 495(3):2242–2248. https://doi.org/10.1016/j.bbrc.2017.12.079

    Article  CAS  PubMed  Google Scholar 

  53. Chin KY, Abdul-Majeed S, Mohamed N, Ima-Nirwana S (2017) The effects of tocotrienol and lovastatin co-supplementation on bone dynamic histomorphometry and bone morphogenetic protein-2 expression in rats with estrogen deficiency. Nutrients 9 (2). doi:https://doi.org/10.3390/nu9020143

  54. Blokhuis TJ, Buma P, Verdonschot N, Gotthardt M, Hendriks T (2012) BMP-7 stimulates early diaphyseal fracture healing in estrogen deficient rats. J Orthop Res 30(5):720–725. https://doi.org/10.1002/jor.22013

    Article  CAS  PubMed  Google Scholar 

  55. Siegenthaler B, Ghayor C, Gjoksi-Cosandey B, Ruangsawasdi N, Weber FE (2018) The bromodomain inhibitor N-methyl pyrrolidone prevents osteoporosis and BMP-triggered sclerostin expression in osteocytes. Int J Mol Sci 19 (11). doi:https://doi.org/10.3390/ijms19113332

  56. Diwan AD, Leong A, Appleyard R, Bhargav D, Fang ZM, Wei A (2013) Bone morphogenetic protein-7 accelerates fracture healing in osteoporotic rats. Indian J Orthop 47(6):540–546. https://doi.org/10.4103/0019-5413.121569

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mathavan N, Tagil M, Isaksson H (2017) Do osteoporotic fractures constitute a greater recalcitrant challenge for skeletal regeneration? Investigating the efficacy of BMP-7 and zoledronate treatment of diaphyseal fractures in an open fracture osteoporotic rat model. Osteoporos Int 28(2):697–707. https://doi.org/10.1007/s00198-016-3771-8

    Article  CAS  PubMed  Google Scholar 

  58. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, Ahmad Z, Ibrahim Z, Jamaluddin R (2015) Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int 2015:897639. https://doi.org/10.1155/2015/897639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen YS, Chen XJ, Wuri SN, Yang F, Pang FX, Xu LL, He W, Wei QS (2020) Polydatin improves osteogenic differentiation of human bone mesenchymal stem cells by stimulating TAZ expression via BMP2-Wnt/beta-catenin signaling pathway. Stem Cell Res Ther 11(1):204. https://doi.org/10.1186/s13287-020-01705-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Min HY, Son HE, Jang WG (2019) Estradiol-induced RORalpha expression positively regulates osteoblast differentiation. Steroids 149:108412. https://doi.org/10.1016/j.steroids.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  61. Litwa E, Rzemieniec J, Wnuk A, Lason W, Krzeptowski W, Kajta M (2014) Apoptotic and neurotoxic actions of 4-para-nonylphenol are accompanied by activation of retinoid X receptor and impairment of classical estrogen receptor signaling. J Steroid Biochem Mol Biol 144 Pt B:334–347. https://doi.org/10.1016/j.jsbmb.2014.07.014

    Article  CAS  PubMed  Google Scholar 

  62. Lebesgue D, Chevaleyre V, Zukin RS, Etgen AM (2009) Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids 74(7):555–561. https://doi.org/10.1016/j.steroids.2009.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wnuk A, Rzemieniec J, Lason W, Krzeptowski W, Kajta M (2018) Apoptosis induced by the UV filter benzophenone-3 in mouse neuronal cells is mediated via attenuation of Eralpha/Ppargamma and stimulation of Erbeta/Gpr30 signaling. Mol Neurobiol 55(3):2362–2383. https://doi.org/10.1007/s12035-017-0480-z

    Article  CAS  PubMed  Google Scholar 

  64. Bai N, Zhang Q, Zhang W, Liu B, Yang F, Brann D, Wang R (2020) G-protein-coupled estrogen receptor activation upregulates interleukin-1 receptor antagonist in the hippocampus after global cerebral ischemia: implications for neuronal self-defense. J Neuroinflammation 17(1):45. https://doi.org/10.1186/s12974-020-1715-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Broughton BR, Brait VH, Kim HA, Lee S, Chu HX, Gardiner-Mann CV, Guida E, Evans MA, Miller AA, Arumugam TV, Drummond GR, Sobey CG (2014) Sex-dependent effects of G protein-coupled estrogen receptor activity on outcome after ischemic stroke. Stroke 45(3):835–841. https://doi.org/10.1161/STROKEAHA.113.001499

    Article  CAS  PubMed  Google Scholar 

  66. Spencer-Segal JL, Tsuda MC, Mattei L, Waters EM, Romeo RD, Milner TA, McEwen BS, Ogawa S (2012) Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation. Neuroscience 202:131–146. https://doi.org/10.1016/j.neuroscience.2011.11.035

    Article  CAS  PubMed  Google Scholar 

  67. Sohrabji F, Miranda RC, Toran-Allerand CD (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92(24):11110–11114. https://doi.org/10.1073/pnas.92.24.11110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Solum DT, Handa RJ (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci 22(7):2650–2659. https://doi.org/10.1523/JNEUROSCI.22-07-02650.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou S, Turgeman G, Harris SE, Leitman DC, Komm BS, Bodine PV, Gazit D (2003) Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol Endocrinol 17(1):56–66. https://doi.org/10.1210/me.2002-0210

    Article  CAS  PubMed  Google Scholar 

  70. Kight KE, McCarthy MM (2017) Sex differences and estrogen regulation of BDNF gene expression, but not propeptide content, in the developing hippocampus. J Neurosci Res 95(1–2):345–354. https://doi.org/10.1002/jnr.23920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu Y, Sareddy GR, Wang J, Wang R, Li Y, Dong Y, Zhang Q, Liu J, O’Connor JC, Xu J, Vadlamudi RK, Brann DW (2019) Neuron-derived estrogen regulates synaptic plasticity and memory. J Neurosci 39(15):2792–2809. https://doi.org/10.1523/JNEUROSCI.1970-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Woods NF, Carr MC, Tao EY, Taylor HJ, Mitchell ES (2006) Increased urinary cortisol levels during the menopausal transition. Menopause 13(2):212–221. https://doi.org/10.1097/01.gme.0000198490.57242.2e

    Article  PubMed  Google Scholar 

  73. Bale TL, Epperson CN (2015) Sex differences and stress across the lifespan. Nat Neurosci 18(10):1413–1420. https://doi.org/10.1038/nn.4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Albert K, Pruessner J, Newhouse P (2015) Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle. Psychoneuroendocrinology 59:14–24. https://doi.org/10.1016/j.psyneuen.2015.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hodes GE, Epperson CN (2019) Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry 86(6):421–432. https://doi.org/10.1016/j.biopsych.2019.04.028

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shanmugan S, Loughead J, Cao W, Sammel MD, Satterthwaite TD, Ruparel K, Gur RC, Epperson CN (2017) Impact of tryptophan depletion on executive system function during menopause is moderated by childhood adversity. Neuropsychopharmacology 42(12):2398–2406. https://doi.org/10.1038/npp.2017.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rehman HU, Masson EA (2005) Neuroendocrinology of female aging. Gend Med 2(1):41–56. https://doi.org/10.1016/s1550-8579(05)80008-7

    Article  PubMed  Google Scholar 

  78. Ebrahimzadeh-Bideskan AR, Mansouri S, Ataei ML, Jahanshahi M, Hosseini M (2018) The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats. Anat Sci Int 93(2):218–230. https://doi.org/10.1007/s12565-017-0398-6

    Article  CAS  PubMed  Google Scholar 

  79. Henderson VW, Paganini-Hill A, Emanuel CK, Dunn ME, Buckwalter JG (1994) Estrogen replacement therapy in older women. Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 51(9):896–900

    Article  CAS  PubMed  Google Scholar 

  80. Jacobs DM, Tang MX, Stern Y, Sano M, Marder K, Bell KL, Schofield P, Dooneief G, Gurland B, Mayeux R (1998) Cognitive function in nondemented older women who took estrogen after menopause. Neurology 50(2):368–373. https://doi.org/10.1212/wnl.50.2.368

    Article  CAS  PubMed  Google Scholar 

  81. Kim TW, Kim CS, Kim JY, Kim CJ, Seo JH (2016) Combined exercise ameliorates ovariectomy-induced cognitive impairment by enhancing cell proliferation and suppressing apoptosis. Menopause 23(1):18–26. https://doi.org/10.1097/GME.0000000000000486

    Article  PubMed  Google Scholar 

  82. Peng Y, Jiang B, Wu H, Dai R, Tan L (2012) Effects of genistein on neuronal apoptosis, and expression of Bcl-2 and Bax proteins in the hippocampus of ovariectomized rats. Neural Regen Res 7(36):2874–2881. https://doi.org/10.3969/j.issn.1673-5374.2012.36.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Steffens DC, Norton MC, Plassman BL, Tschanz JT, Wyse BW, Welsh-Bohmer KA, Anthony JC, Breitner JC (1999) Enhanced cognitive performance with estrogen use in nondemented community-dwelling older women. J Am Geriatr Soc 47(10):1171–1175

    Article  CAS  PubMed  Google Scholar 

  84. Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B, Andrews H, Mayeux R (1996) Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348(9025):429–432. https://doi.org/10.1016/S0140-6736(96)03356-9

    Article  CAS  PubMed  Google Scholar 

  85. Waring SC, Rocca WA, Petersen RC, O’Brien PC, Tangalos EG, Kokmen E (1999) Postmenopausal estrogen replacement therapy and risk of AD: a population-based study. Neurology 52(5):965–970. https://doi.org/10.1212/wnl.52.5.965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RP, AG, and KM were supported by UGC fellowship, Government of India; KG was supported by CSIR fellowship, Government of India; and PS was supported by Science and Engineering Research Board (SERB), Government of India.

Jitendra Vishwakarma (SRF, CSIR-IITR) helped in the surgical procedures. The CSIR-IITR communication number of this article is 3744.

Funding

This study was supported by SERB, Government of India, GAP406.

Author information

Authors and Affiliations

Authors

Contributions

Rukmani Pandey contributed to the experimental planning, animal treatments, animal surgeries, major Western blotting, IF (Figs. 4d and 5b and d), TUNEL assay (Fig. 6c), neurobehavioral assays, serum estradiol estimation, data analysis, and data compilation. Asmita Garg performed IF (Figs. 3c and 4b), TUNEL assay (Fig. 3d) and Nissl staining, data analysis, and data compilation. Keerti Gupta contributed to animal treatment, animal surgery, neurobehavioral experiments, and data analysis. Pallavi Shukla contributed to a few Western blots. Kapil Mandrah and Somendu Roy contributed to the arsenic estimation. Naibedya Chattopadhyay contributed to experimental designing. Sanghamitra Bandyopadhyay contributed to the overall experimental planning, designing, supervision, and paper writing.

Corresponding author

Correspondence to Sanghamitra Bandyopadhyay.

Ethics declarations

Ethics Approval

Wistar rats were used after obtaining approval from the Institutional Animal Ethics Committee of CSIR-CDRI and CSIR-IITR. Guidelines and regulations of the Ethics Committee were followed for maintenance and handling of the rats.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R., Garg, A., Gupta, K. et al. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 59, 2729–2744 (2022). https://doi.org/10.1007/s12035-022-02770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02770-1

Keywords

Navigation