Skip to main content
Log in

Macamide B Pretreatment Attenuates Neonatal Hypoxic-Ischemic Brain Damage of Mice Induced Apoptosis and Regulates Autophagy via the PI3K/AKT Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lepidium meyenii (maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb possesses antioxidant and antiapoptotic activities, enhances autophagy functions, prevents cell death, and protects neurons from ischemic damage. Macamide B, an effective active ingredient of maca, exerts a neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), but the mechanism underlying its neuroprotective effect is not yet known. The purpose of this study was to explore the effect of macamide B on HIBD-induced autophagy and apoptosis and its potential neuroprotective mechanism. The modified Rice-Vannucci method was used to induce HIBD in 7-day-old (P7) macamide B- and vehicle-pretreated pups. TTC staining was performed to evaluate the cerebral infarct volume in pups, the brain water content was measured to evaluate the neurological function of pups, neurobehavioural testing was conducted to assess functional recovery after HIBD, TUNEL and FJC staining was performed to detect cellular autophagy and apoptosis, and Western blot analysis was used to detect the levels of proteins in the pro-survival phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway and autophagy and apoptosis-related proteins. Macamide B pretreatment significantly decreases brain damage and improves the recovery of neural function after HIBD. At the same time, macamide B pretreatment activates the PI3K/AKT signaling pathway after HIBD, enhances autophagy, and reduces hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of the PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that a macamide B pretreatment might regulate autophagy through the PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data and Materials Availability

All data and materials are available on request from authors.

References

  1. Gamdzyk M, Doycheva DM, Araujo C, Ocak U, Luo Y, Tang J, Zhang JH (2020) cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. Mol Neurobiol 57(6):2600–2619. https://doi.org/10.1007/s12035-020-01904-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169(4):397–403. https://doi.org/10.1001/jamapediatrics.2014.3269

    Article  PubMed  Google Scholar 

  3. Arteni NS, Salgueiro J, Torres I, Achaval M, Netto CA (2003) Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat. Brain Res 973(2):171–178. https://doi.org/10.1016/s0006-8993(03)02436-3

    Article  CAS  PubMed  Google Scholar 

  4. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86(6):329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010

    Article  PubMed  Google Scholar 

  5. Uria-Avellanal C, Robertson NJ (2014) Na+/H+ exchangers and intracellular pH in perinatal brain injury. Transl Stroke Res 5(1):79–98. https://doi.org/10.1007/s12975-013-0322-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carlsson Y, Schwendimann L, Vontell R, Rousset CI, Wang X, Lebon S, Charriaut-Marlangue C, Supramaniam V, Hagberg H, Gressens P, Jacotot E (2011) Genetic inhibition of Caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury. Ann Neurol 70(5):781–789. https://doi.org/10.1002/ana.22431

    Article  CAS  PubMed  Google Scholar 

  7. Cai CC, Zhu JH, Ye LX, Dai YY, Fang MC, Hu YY, Pan SL, Chen S, Li PJ, Fu XQ, Lin ZL (2019) glycine protects against hypoxic-ischemic brain injury by regulating mitochondria-mediated autophagy via the AMPK pathway. Oxid Med Cell Longev 2019:4248529. https://doi.org/10.1155/2019/4248529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi X, Xu L, Doycheva DM, Tang J, Yan M, Zhang JH (2017) Sestrin2, as a negative feedback regulator of mTOR, provides neuroprotection by activation AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups. J Cereb Blood Flow Metab 37(4):1447–1460. https://doi.org/10.1177/0271678X16656201

    Article  CAS  PubMed  Google Scholar 

  9. Wasan H, Singh D, Joshi B, Sharma U, Dinda AK, Reeta KH (2021) Post stroke safinamide treatment attenuates neurological damage by modulating autophagy and apoptosis in experimental model of stroke in rats. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02523-6

  10. Li Y, Guo Y, Fan Y, Tian H, Li K, Mei X (2019) Melatonin enhances autophagy and reduces apoptosis to promote locomotor recovery in spinal cord injury via the PI3K/AKT/mTOR signaling pathway. Neurochem Res 44(8):2007–2019. https://doi.org/10.1007/s11064-019-02838-w

    Article  CAS  PubMed  Google Scholar 

  11. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, Yankner BA, Scherzer CR, Yuan J (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain ageing and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107(32):14164–14169. https://doi.org/10.1073/pnas.1009485107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kotoda M, Furukawa H, Miyamoto T, Korai M, Shikata F, Kuwabara A, Xiong X, Rutledge C, Giffard RG, Hashimoto T (2018) Role of myeloid lineage cell autophagy in ischemic brain injury. Stroke 49(6):1488–1495. https://doi.org/10.1161/strokeaha.117.018637

    Article  PubMed  PubMed Central  Google Scholar 

  13. Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y, Qu Y (2017) Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 62(3). https://doi.org/10.1111/jpi.12395

  14. Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, Liu J, Qin ZH, Zhang HL (2010) Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 6(6):738–753. https://doi.org/10.4161/auto.6.6.12573

    Article  CAS  PubMed  Google Scholar 

  15. Wang MM, Zhang M, Feng YS, Xing Y, Tan ZX, Li WB, Dong F, Zhang F (2020) Electroacupuncture inhibits neuronal autophagy and apoptosis via the PI3K/AKT pathway following ischemic stroke. Front Cell neurosci 14:134. https://doi.org/10.3389/fncel.2020.00134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leon J (1963) The “Maca” (Lepidium meyenii), A little known food plant of Peru. Econ Bot 18(2):122–127. https://doi.org/10.1007/BF02862707

    Article  Google Scholar 

  17. Wang LW, Liang J, Wang XD, Yuan XF, Zhao B, Yang YW (2012) High efficient antioxidant activity of extracts from Lepidium meyenii Walp. Asian J Chem 24(10):4795–4798. https://doi.org/10.1007/s12633-012-9134-y

    Article  CAS  Google Scholar 

  18. Sandovala M, Okuhama NN, Angeles FM, Melchor VV, Condezo LA, Lao J, Miller MJS (2002) Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chem 79(2):207–213. https://doi.org/10.1016/S0308-8146(02)00133-4

    Article  Google Scholar 

  19. Lewis S, Pino-Figueroa A (2013) Neuroprotective effects of Maca extract and macamides against amyloid β peptide induced neurotoxicity in B-35 neuroblastoma cells. The FASEB Journal 27:622.19.27(S1):662.619–662.619. https://doi.org/10.1096/fasebj.27.1_supplement.662.19

  20. Hajdu Z, Nicolussi S, Rau M, Lorántfy L, Forgo P, Hohmann J, Csupor D, Gertsch J (2014) Identification of endocannabinoid system-modulating N-alkylamides from Heliopsis helianthoides var scabra and Lepidium meyenii. J Nat Prod 77(7):1663–1669. https://doi.org/10.1021/np500292g

    Article  CAS  PubMed  Google Scholar 

  21. Alasmari M, Bӧhlke M, Kelley C, Maher T, Pino-Figueroa A (2019) Inhibition of fatty acid amide hydrolase (FAAH) by macamides. Mol neurobiol 56(3):1770–1781. https://doi.org/10.1007/s12035-018-1115-8

    Article  CAS  PubMed  Google Scholar 

  22. Ye YQ, Ma ZH, Yang QF, Sun YQ, Zhang RQ, Wu RF, Ren X, Mu LJ, Jiang ZY, Zhou M (2019) Isolation and synthesis of a new benzylated alkamide from the roots of Lepidium meyenii. Nat Prod Res 33(19):2731–2737. https://doi.org/10.1080/14786419.2018.1499633

    Article  CAS  PubMed  Google Scholar 

  23. Guo SS, Gao XF, Gu YR, Wan ZX, Lu AM, Qin ZH, Luo L (2016) Preservation of cognitive function by Lepidium meyenii (Maca) is associated with improvement of mitochondrial activity and upregulation of autophagy-related proteins in middle-aged mouse cortex. Evid Based complement Alternat Med 2016:4394261. https://doi.org/10.1155/2016/4394261

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu F, Wang Y, Yao W, Xue Y, Zhou J, Liu Z (2019) Geniposide attenuates neonatal mouse brain injury after hypoxic-ischemia involving the activation of PI3K/Akt signaling pathway. J Chem Neuroanat 102:101687. https://doi.org/10.1016/j.jchemneu.2019.101687

    Article  CAS  PubMed  Google Scholar 

  25. Tian Z, Tang C, Wang Z (2019) Neuroprotective effect of ginkgetin in experimental cerebral ischemia/reperfusion via apoptosis inhibition and PI3K/Akt/mTOR signaling pathway activation. J Cell Biochem 120(10):18487–18495. https://doi.org/10.1002/jcb.29169

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Z, Xu N, Matei N, McBride DW, Ding Y, Liang H, Tang J, Zhang JH (2021) Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats. J Cereb Blood Flow Metab 41(2):267–281. https://doi.org/10.1177/0271678x20910533

    Article  CAS  PubMed  Google Scholar 

  27. Jin Y, Shang Y, Zhang D, An J, Pan D (2019) Hexabromocyclododecanes promoted autophagy through the PI3K/Akt/mTOR pathway in L02 cells. J Environ Manage 244:77–82. https://doi.org/10.1016/j.jenvman.2019.05.031

    Article  CAS  PubMed  Google Scholar 

  28. Guo Y, Wang J, Wang Z, Yang Y, Wang X, Duan Q (2010) Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement. J Huazhong Univ Sci Technolog Med Sci 30(1):1–7. https://doi.org/10.1007/s11596-010-0101-9

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, Zheng Y, Deng T, Yan H, Li W, Hou WW, Lu J, Shen Y, Dai H, Hu WW, Zhang Z, Chen Z (2014) Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy. Autophagy 10(10):1801–1813. https://doi.org/10.4161/auto.32136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang RR, Meng NN, Liu C, Li KL, Wang MX, Lv ZB, Chen SY, Guo X, Wang XK, Wang Q, Sun JY (2020) PDB-1 from Potentilla discolor Bunge induces apoptosis and autophagy by downregulating the PI3K/Akt/mTOR signaling pathway in A549 cells. Biomed Pharmacother 129:110378. https://doi.org/10.1016/j.biopha.2020.110378

    Article  CAS  PubMed  Google Scholar 

  31. Zhang DM, Zhang T, Wang MM, Wang XX, Qin YY, Wu J, Han R, Sheng R, Wang Y, Chen Z, Han F, Ding Y, Li M, Qin ZH (2019) TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 137:13–23. https://doi.org/10.1016/j.freeradbiomed.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  32. Xu N, Zhang Y, Doycheva DM, Ding Y, Zhang Y, Tang J, Guo H, Zhang JH (2018) Adiponectin attenuates neuronal apoptosis induced by hypoxia-ischemia via the activation of AdipoR1/APPL1/LKB1/AMPK pathway in neonatal rats. Neuropharmacology 133:415–428. https://doi.org/10.1016/j.neuropharm.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  33. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141. https://doi.org/10.1002/ana.410090206

    Article  PubMed  Google Scholar 

  34. Xu B, Xiao AJ, Chen W, Turlova E, Liu R, Barszczyk A, Sun CLF, Liu L, Tymianski M, Feng ZP, Sun HS (2016) Neuroprotective effects of a PSD-95 inhibitor in neonatal hypoxic-ischemic brain injury. Mol Neurobiol 53(9):5962–5970. https://doi.org/10.1007/s12035-015-9488-4

    Article  CAS  PubMed  Google Scholar 

  35. Tymianski M (2011) Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci 14(11):1369–1373. https://doi.org/10.1038/nn.2951

    Article  CAS  PubMed  Google Scholar 

  36. Bo Q, Shen M, Xiao M, Liang J, Zhai Y, Zhu H, Jiang M, Wang F, Luo X, Sun X (2020) 3-Methyladenine alleviates experimental subretinal fibrosis by inhibiting macrophages and M2 polarization through the PI3K/Akt pathway. J Ocul Pharmacol Ther 36(8):618–628. https://doi.org/10.1089/jop.2019.0112

    Article  CAS  PubMed  Google Scholar 

  37. Schabitz WR, Fisher M (2006) Perspectives on neuroprotective stroke therapy. Biochem Soc Trans 34:1271–1276. https://doi.org/10.1042/BST0341271

    Article  PubMed  Google Scholar 

  38. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54(1):34–66. https://doi.org/10.1016/j.brainresrev.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  39. Choi EH, Kang JI, Cho JY, Lee SH, Kim TS, Yeo IH, Chun HS (2012) Supplementation of standardized lipid-soluble extract from maca (Lepidium meyenii) increases swimming endurance capacity in rats. J Funct Foods 4(2):568–573. https://doi.org/10.1016/j.jff.2012.03

    Article  CAS  Google Scholar 

  40. Zhang Y, Yu L, Ao M, Jin W (2006) Effect of ethanol extract of Lepidium meyenii Walp. on osteoporosis in ovariectomized rat. J Ethnopharmacol 105(1):274–279. https://doi.org/10.1016/j.jep.2005.12.013

    Article  PubMed  Google Scholar 

  41. Valentová K, Ulrichová J (2003) Smallanthus sonchifolius and Lepidium meyenii - prospective Andean crops for the prevention of chronic diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147(2):119–130

    Article  PubMed  Google Scholar 

  42. Zheng BL, He K, Kim CH, Rogers L, Shao Y, Huang ZY, Lu Y, Yan SJ, Qien LC, Zheng QY (2000) Effect of a lipidoc extract from lepidium meyenii on sexual behavior in mice and rats. Urology 55(4):598–602. https://doi.org/10.1016/s0090-4295(99)00549-x

    Article  CAS  PubMed  Google Scholar 

  43. Dini A, Migliuolo G, Rastrelli L, Saturnino P, Schettino O (1994) Chemical composition of Lepidium meyenii. Food Chem 49:347–349. https://doi.org/10.1016/0308-8146(94)90003-5

    Article  CAS  Google Scholar 

  44. Alessandro M, Francesco M, Zaira E, Hajime K, Fabrizia M, Claudia C, Giuseppe S, Giorgio B, Giacomo K (2009) Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 34(10):2323–2328. https://doi.org/10.1038/npp.2009.60

    Article  CAS  Google Scholar 

  45. Wang GH, Jiang ZL, Fan XJ, Zhang L, Li X, Ke KF (2007) Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology 52(5):1199–1209. https://doi.org/10.1016/j.neuropharm.2006.10.022

    Article  CAS  PubMed  Google Scholar 

  46. Pergakis M, Badjatia N, Chaturvedi S, Cronin CA, Kimberly WT, Sheth KN, Simard JM (2019) BIIB093 (IV glibenclamide): an investigational compound for the prevention and treatment of severe cerebral edema. Expert Opin Investig Drugs 28(12):1031–1040. https://doi.org/10.1080/13543784.2019.1681967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao YJ, Nai Y, Li SY, Zheng YH (2018) Retigabine protects the blood-brain barrier by regulating tight junctions between cerebral vascular endothelial cells in cerebral ischemia-reperfusion rats. Eur Rev Med Pharmacol Sci 22(23):8509–8518. https://doi.org/10.26355/eurrev_201812_16552

  48. Buckholtz NS (1980) Neurobiology of tetrahydro-beta-carbolines. Life Sci 27(11):893–903. https://doi.org/10.1016/0024-3205(80)90098-3

    Article  CAS  PubMed  Google Scholar 

  49. Gonzales GF, Gonzales-Castañeda C (2008) The Methyltetrahydro-{beta}-carbolines in maca (Lepidium meyenii). Evid Based Complement Alternat Med 6(3):315–316. https://doi.org/10.1093/ecam/nen041

    Article  PubMed  PubMed Central  Google Scholar 

  50. Herraiz T (2000) Tetrahydro-beta-carbolines, potential neuroactive alkaloids, in chocolate and cocoa. J Agric Food Chem 48(10):4900–4904. https://doi.org/10.1021/jf000508l

    Article  CAS  PubMed  Google Scholar 

  51. Liu XM, Feng Y, Li AM (2015) Efect of G-CSF and TPO on HIBD in neonatal rats. Asian Pac J Trop Med 8(2):132–136. https://doi.org/10.1016/s1995-7645(14)60303-5

    Article  CAS  PubMed  Google Scholar 

  52. Johnston MV, Ferriero DM, Vannucci SJ, Hagberg H (2005) Models of cerebral palsy: which ones are best? J Child Neurol 20(12):984–987. https://doi.org/10.1177/08830738050200121001

    Article  PubMed  Google Scholar 

  53. Towfghi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Infuence of age on the cerebral lesions in an immature rat model of cerebral hypoxia–ischemia: a light microscopic study. Brain Res Dev Brain Res 100(2):149–160. https://doi.org/10.1016/s0165-3806(97)00036-9

    Article  Google Scholar 

  54. Zheng Z, Zhang L, Qu Y, Xiao G, Li S, Bao S, Lu QR, Mu D (2018) Mesenchymal stem cells protect against hypoxia ischemia brain damage by enhancing autophagy through BDNF/mTOR signaling pathway. Stem Cells 36(7):1109–1121. https://doi.org/10.1002/stem.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Banasiak KJ, Xia Y, Haddad GG (2000) Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol 62(3):215–249. https://doi.org/10.1016/s0301-0082(00)00011-3

    Article  CAS  PubMed  Google Scholar 

  56. Sidhu RS, Tuor UI, Del Bigio MR (1997) Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci Lett 223(2):129–132. https://doi.org/10.1016/s0304-3940(97)13426-7

    Article  CAS  PubMed  Google Scholar 

  57. Northington FJ, Graham EM, Martin LJ (2005) Apoptosis in perinatal hypoxic-is-chemic brain injury: how important is it and should it be inhibited? Brain Res BrainRes Rev 50(2):244–257. https://doi.org/10.1016/j.brainresrev.2005.07.003

    Article  CAS  Google Scholar 

  58. Zhang X, Kan H, Liu Y, Ding W (2021) Plumbagin induces Ishikawa cell cycle arrest, autophagy, and apoptosis via the PI3K/Akt signaling pathway in endometrial cancer. Food and chemical toxicology Food Chem Toxicol 148:111957. https://doi.org/10.1016/j.fct.2020.111957

    Article  CAS  PubMed  Google Scholar 

  59. Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT, Hoefer S, Adam G, Niederhauser O, Kemp JA, Loetscher H (2002) Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab 22(4):420–430. https://doi.org/10.1097/00004647-200204000-00006

    Article  CAS  PubMed  Google Scholar 

  60. Haylor JL, Harris KPG, Nicholson ML, Waller HL, Huang Q, Yang B (2011) Atorvastatin improving renal ischemia reperfusion injury via direct inhibition of active caspase-3 in rats. Exp Biol Med (Maywood) 236(6):755–763. https://doi.org/10.1258/ebm.2011.010350

    Article  CAS  Google Scholar 

  61. Zhu HC, Gao XQ, Xing Y, Sun SG, Li HG, Wang YF (2004) Inhibition of Caspase 3 activation and apoptosis is involved in 3-nitropropionic acid-induced ischemic tolerance to transient focal cerebral ischemia in rats. J Mol Neurosci 24(2):299–305. https://doi.org/10.1385/jmn:24:2:299

    Article  CAS  PubMed  Google Scholar 

  62. Zhang C, Huang C, Yang P, Li C, Li M (2021) ROS to suppress the PI3K/Akt/mTOR signaling pathway. Cell Signal 78:109841. https://doi.org/10.1016/j.cellsig.2020.109841

    Article  CAS  PubMed  Google Scholar 

  63. Zhou J, Jiang YY, Chen H, Wu YC, Zhang L (2020) Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif 53(2):e12739. https://doi.org/10.1111/cpr.12739

    Article  PubMed  Google Scholar 

  64. Li TF, Ma J, Han XW, Jia YX, Yuan HF, Shui SF, Guo D, Yan L (2019) Chrysin ameliorates cerebral ischemia/reperfusion (I/R) injury in rats by regulating the PI3K/Akt/mTOR pathway. Neurochem Int 129:104496. https://doi.org/10.1016/j.neuint.2019.104496

    Article  CAS  PubMed  Google Scholar 

  65. Huang TJ, Ren JJ, Zhang QQ, Kong YY, Zhang HY, Guo XH, Fan HQ, Liu LX (2019) IGFBPrP1 accelerates autophagy and activation of hepatic stellate cells via mutual regulation between H19 and PI3K/AKT/mTOR pathway. Biomed Pharmacother 116:109034. https://doi.org/10.1016/j.biopha.2019.109034

    Article  CAS  PubMed  Google Scholar 

  66. Li A, Li X, Chen X, Zeng C, Wang Z, Li Z, Chen J (2020) NUPR1 silencing induces autophagy-mediated apoptosis in multiple myeloma cells through the PI3K/AKT/mTOR pathway. DNA Cell Biol 39(3):368–378. https://doi.org/10.1089/dna.2019.5196

    Article  CAS  PubMed  Google Scholar 

  67. Guo H, Zhao L, Wang B, Li X, Bai H, Liu H, Yue L, Guo W, Bian Z, Gao L, Feng D, Qu Y (2018) Remote limb ischemic postconditioning protects against cerebral ischemia-reperfusion injury by activating AMPK-dependent autophagy. Brain Res Bull 139:105–113. https://doi.org/10.1016/j.brainresbull.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Y, Zhang Y, Jin XF, Zhou XH, Dong XH, Yu WT, Gao WJ (2019) The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules (Basel, Switzerland) 24(9). https://doi.org/10.3390/molecules24091838

  69. Zhang F, Dong H, Lv T, Jin K, Jin Y, Zhang X, Jiang J (2018) Moderate hypothermia inhibits microglial activation after traumatic brain injury by modulating autophagy/apoptosis and the MyD88-dependent TLR4 signaling pathway. J Neuroinflammation 15(1):273. https://doi.org/10.1186/s12974-018-1315-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun Y, Zhang T, Zhang Y, Li J, Jin L, Shi N, Liu K, Sun X (2018) Ischemic postconditioning alleviates cerebral ischemia-reperfusion injury through activating autophagy during early reperfusion in rats. Neurochem Res 43(9):1826–1840. https://doi.org/10.1007/s11064-018-2599-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feng J, Chen X, Guan B, Li C, Qiu J, Shen J (2018) Inhibition of peroxynitrite-induced mitophagy activation attenuates cerebral ischemia-reperfusion injury. Mol Neurobiol 55(8):6369–6386. https://doi.org/10.1007/s12035-017-0859-x

    Article  CAS  PubMed  Google Scholar 

  72. Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L, Zhuang X, Jiang X (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 11:84. https://doi.org/10.3389/fphar.2020.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ye L, Wang X, Cai C, Zeng S, Bai J, Guo K, Fang M, Hu J, Liu H, Zhu L, Liu F, Wang D, Hu Y, Pan S, Li X, Lin L, Lin Z (2019) FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/AKT signaling pathway via FGFR1/β-klotho. Exp Neurol 317:34–50. https://doi.org/10.1016/j.expneurol.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  74. Xian G, Chen W, Gu M, Ye Y, Yang G, Lai W, Xiao Y, Zhao X, Zheng L, Pan B, Kang Y, Zhang Z, Sheng P (2020) Titanium particles induce apoptosis by promoting autophagy in macrophages via the PI3K/Akt signaling pathway. J Biomed Mater Res A 108(9):1792–1805. https://doi.org/10.1002/jbm.a.36938

    Article  CAS  PubMed  Google Scholar 

  75. Zhang W, Liu J, Hu X, Li P, Leak RK, Gao Y, Chen J (2015) n-3 polyunsaturated fatty acids reduce neonatal Hypoxic/Ischemic brain injury by promoting phosphatidylserine formation and AKT signaling. Stroke 46(10):2943–2950. https://doi.org/10.1161/STROKEAHA.115.010815

    Article  CAS  PubMed  Google Scholar 

  76. Tu L, Wang Y, Chen D, Xiang P, Shen J, Li Y, Wang S (2018) Protective effects of Notoginsenoside R1 via regulation of the PI3K-AKT-mTOR/JNK pathway in neonatal cerebral hypoxic-ischemic brain injury. Neurochem Res 43(6):1210–1226. https://doi.org/10.1007/s11064-018-2538-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rychahou PG, Jackson LN, Silva SR, Rajaraman S, Evers BM (2006) Targeted molecular therapy of the PI3K pathway therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann Surg 243(6):833–844. https://doi.org/10.1097/01.sla.0000220040.66012.a9

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cubero-Gómez JM, Guerrero Márquez FJ, La-Llera DD, Fernández-Quero M, Guisado-Rasco A, Villa-Gil-Ortega M (2017) Severe thrombocytopenia induced by iodinated contrast after coronary an giography: The use of gadolinium contrast and intravascular ultra sound as an alternative to guide percutaneous coronary intervention. Rev Port Cardiol 36(1):61.e1-61.e4. https://doi.org/10.1016/j.repc.2016.04.014

    Article  Google Scholar 

  79. Tan XH, Zhang KK, Xu JT, Qu D, Chen LJ, Li JH, Wang Q, Wang HJ, Xie XL (2020) Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol 137:111179. https://doi.org/10.1016/j.fct.2020.111179

    Article  CAS  PubMed  Google Scholar 

  80. Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L, Liu N, Ji J (2016) Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 61(2):177–186. https://doi.org/10.1111/jpi.12337

    Article  CAS  PubMed  Google Scholar 

  81. He H, Liu W, Zhou Y, Liu Y, Weng P, Li Y, Fu H (2018) Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. Drug Des Devel Ther 12:629–638. https://doi.org/10.2147/dddt.S158313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tian S, Lin J, Jun Zhou J, Wang X, Li Y, Ren X, Yu W, Zhong W, Xiao J, Sheng F, Chen Y, Jin C, Li S, Zheng Z, Xia B (2010) Beclin 1-independent autophagy induced by a Bcl-XL/Bcl-2 targeting compound, Z18. Autophagy 6(8):1032–1041. https://doi.org/10.4161/auto.6.8.13336

    Article  CAS  PubMed  Google Scholar 

  83. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26(10):2527–2539. https://doi.org/10.1038/sj.emboj.7601689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27(17):6229–6242. https://doi.org/10.1128/MCB.02246-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. He C, Zhu H, Li H, Zou MH, Xie Z (2013) Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62(4):1270–1281. https://doi.org/10.2337/db12-0533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu J-H, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86. https://doi.org/10.2353/ajpath.2007.060524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329. https://doi.org/10.1038/cdd.2008.51

    Article  PubMed  Google Scholar 

  88. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park JH, Lee JE, Shin IC, Koh HC (2013) Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicol Appl Pharmacol 268(1):55–67. https://doi.org/10.1016/j.taap.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  90. He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, Gou X, Lin Y (2012) Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 8(12):1811–1821. https://doi.org/10.4161/auto.22145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support from Guangdong Pharmaceutical University.

Funding

This project was financially supported by the National Natural Science Foundation of China for Youth (grant no. 81901524), the Natural Science Foundation of Guangdong Province (2021A1515011525, 2018A030313579), and the Guangdong Medical Science and Technology Research Fund (A2020252).

Author information

Authors and Affiliations

Authors

Contributions

Li Luo and Mengxia Wang established the animal models and providing technical and writing guidance throughout the process; Xiaoxia Yang contributed in experimental operations, statistical analysis, and manuscript writing; Qian Zhou assisted in the completion of Western blot, behavioral tests, immunofluorescence, etc.; Yanxian Bai, Jing Liu, Junhua Yang, and Guoying Li provided technical guidance. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guoying Li or Li Luo.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent to Participate

Not applicable to this study.

Consent for Publication

All authors approve the manuscript for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, M., Zhou, Q. et al. Macamide B Pretreatment Attenuates Neonatal Hypoxic-Ischemic Brain Damage of Mice Induced Apoptosis and Regulates Autophagy via the PI3K/AKT Signaling Pathway. Mol Neurobiol 59, 2776–2798 (2022). https://doi.org/10.1007/s12035-022-02751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02751-4

Keywords

Navigation