Skip to main content
Log in

SIRT6 Negatively Regulates Schwann Cells Dedifferentiation via Targeting c-Jun During Wallerian Degeneration After Peripheral Nerve Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Silent information regulator 6 (SIRT6) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Previous studies have been reported a pro-regenerative role of SIRT6 in central nervous system injury. However, the role of SIRT6 in peripheral nerve injury is still unknown. Given the importance and necessity of Schwann cell dedifferentiation response to peripheral nerve injury, we aim to investigate the molecular mechanism of SIRT6 steering Schwann cell dedifferentiation during Wallerian degeneration in injured peripheral nerve. Herein, we first examined the expression pattern of SIRT6 after peripheral nerve injury. Using the explants of sciatic nerve, an ex vivo model of nerve degeneration, we provided evidences indicating that SIRT6 inhibitor accelerates Schwann cell dedifferentiation as well as axonal and myelin degeneration, while SIRT6 activator attenuates this process. Moreover, in an in vitro Schwann cell dedifferentiation model, we found SIRT6 inhibitor promotes Schwann cell dedifferentiation through upregulating the expression of c-Jun. In addition, downregulation of c-Jun reverse the effects of SIRT6 inhibition on the Schwann cells dedifferentiation and axonal and myelin degeneration. In summary, we first described SIRT6 acts as a negative regulator for Schwann cells dedifferentiation during Wallerian degeneration and c-Jun worked as a direct downstream partner of SIRT6 in injured peripheral nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chang AR, Ferrer CM, Mostoslavsky R (2020) SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiol Rev 100(1):145–169. https://doi.org/10.1152/physrev.00030.2018

    Article  CAS  PubMed  Google Scholar 

  2. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221. https://doi.org/10.1038/nature10815

    Article  CAS  PubMed  Google Scholar 

  3. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329. https://doi.org/10.1016/j.cell.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  4. Matsuno H, Tsuchimine S, Fukuzato N, O’Hashi K, Kunugi H, Sohya K (2021) Sirtuin 6 is a regulator of dendrite morphogenesis in rat hippocampal neurons. Neurochem Int 145:104959. https://doi.org/10.1016/j.neuint.2021.104959

    Article  CAS  PubMed  Google Scholar 

  5. Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z, Wang S, Zhao Y, Wang Z, Yuan Y, Zhou Q, Li W, Liu GH, Hu B (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560(7720):661–665. https://doi.org/10.1038/s41586-018-0437-z

    Article  CAS  PubMed  Google Scholar 

  6. Kaluski S, Portillo M, Besnard A, Stein D, Einav M, Zhong L, Ueberham U, Arendt T, Mostoslavsky R, Sahay A, Toiber D (2017) Neuroprotective Functions for the Histone Deacetylase SIRT6. Cell Rep 18(13):3052–3062. https://doi.org/10.1016/j.celrep.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Z, Wu S (2020) Protective effects of SIRT6 against inflammation, oxidative stress, and cell apoptosis in spinal cord injury. Inflammation 43(5):1751–1758. https://doi.org/10.1007/s10753-020-01249-2

    Article  CAS  Google Scholar 

  8. Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15(6):394–409. https://doi.org/10.1038/nrn3680

    Article  CAS  PubMed  Google Scholar 

  9. Chen P, Piao X, Bonaldo P (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 130(5):605–618. https://doi.org/10.1007/s00401-015-1482-4

    Article  CAS  PubMed  Google Scholar 

  10. Fazal SV, Gomez-Sanchez JA (2017) Graded elevation of c-Jun in Schwann cells in vivo: gene dosage determines effects on development, remyelination, tumorigenesis, and hypomyelination. J Neurosci 37(50):12297–12313. https://doi.org/10.1523/jneurosci.0986-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18(11):1643–1650. https://doi.org/10.1038/nm.2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L, Li Y, Fan Z, Wang X, Li Z, Wen J, Deng J, Tan D, Pan M, Hu X, Zhang H, Lai M, Guo J (2019) Ascorbic acid facilitates neural regeneration after sciatic nerve crush injury. Front Cell Neurosci 13:108. https://doi.org/10.3389/fncel.2019.00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wen J, Tan D, Li L, Wang X, Pan M, Guo J (2018) RhoA regulates Schwann cell differentiation through JNK pathway. Exp Neurol 308:26–34. https://doi.org/10.1016/j.expneurol.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  14. Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, Sociali G, Franceschi C, Ballestrero A, Bruzzone S, Del Rio A, Nencioni A (2014) Discovery of novel and selective SIRT6 inhibitors. J Med Chem 57(11):4796–4804. https://doi.org/10.1021/jm500487d

    Article  CAS  PubMed  Google Scholar 

  15. You W, Rotili D, Li TM, Kambach C, Meleshin M, Schutkowski M, Chua KF, Mai A, Steegborn C (2017) Structural basis of sirtuin 6 activation by synthetic small molecules. Angew Chem Int Ed Engl 56(4):1007–1011. https://doi.org/10.1002/anie.201610082

    Article  CAS  PubMed  Google Scholar 

  16. Elsayed H, Faroni A, Ashraf MR, Osuji J, Wunderley L, Zhang L, Elsobky H, Mansour M, Zidan AS, Reid AJ (2020) Development and Characterisation of an in vitro model of Wallerian degeneration. Front Bioeng Biotechnol 8:784. https://doi.org/10.3389/fbioe.2020.00784

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wen J, Li L, Tan D, Guo J (2017) Preparation of teased nerve fibers from rat sciatic nerve. Bio-Protocol 7 (19). https://doi.org/10.21769/BioProtoc.2572

  18. Jung J, Cai W, Lee HK, Pellegatta M, Shin YK, Jang SY, Suh DJ, Wrabetz L, Feltri ML, Park HT (2011) Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration. J Neurosci 31(6):2009–2015. https://doi.org/10.1523/jneurosci.4537-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamada H, Komiyama A, Suzuki K (1995) Schwann cell responses to forskolin and cyclic AMP analogues: comparative study of mouse and rat Schwann cells. Brain Res 681(1–2):97–104. https://doi.org/10.1016/0006-8993(95)00293-y

    Article  CAS  PubMed  Google Scholar 

  20. Arthur-Farraj P, Wanek K, Hantke J, Davis CM, Jayakar A, Parkinson DB, Mirsky R, Jessen KR (2011) Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 59(5):720–733. https://doi.org/10.1002/glia.21144

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cao Z, Zhang D, Tong X, Wang Y, Qi X, Ning W, Xu T, Gao D, Zhang L, Ma Y, Yu T, Zhang Y (2020) Cumulus cell-derived and maternal SIRT6 differentially regulates porcine oocyte meiotic maturation. Theriogenology 142:158–168. https://doi.org/10.1016/j.theriogenology.2019.09.048

    Article  CAS  PubMed  Google Scholar 

  22. Quattrini A, Previtali S, Feltri ML, Canal N, Nemni R, Wrabetz L (1996) Beta 4 integrin and other Schwann cell markers in axonal neuropathy. Glia 17(4):294–306

  23. Jiang H, Cheng ST, Ren JH, Ren F, Yu HB, Wang Q, Huang AL, Chen J (2019) SIRT6 inhibitor, OSS_128167 restricts hepatitis B virus transcription and replication through targeting transcription factor peroxisome proliferator-activated receptors α. Front Pharmacol 10:1270. https://doi.org/10.3389/fphar.2019.01270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vallières N, Berard JL, David S, Lacroix S (2006) Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Glia 53(1):103–113. https://doi.org/10.1002/glia.20266

    Article  PubMed  Google Scholar 

  25. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531. https://doi.org/10.1113/jp270874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng Q, Wang YX, Yu J, Yi S (2017) Critical signaling pathways during Wallerian degeneration of peripheral nerve. Neural Regen Res 12(6):995–1002. https://doi.org/10.4103/1673-5374.208596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiao C, Wang RH, Lahusen TJ, Park O, Bertola A, Maruyama T, Reynolds D, Chen Q, Xu X, Young HA, Chen WJ, Gao B, Deng CX (2012) Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. J Biol Chem 287(50):41903–41913. https://doi.org/10.1074/jbc.M112.415182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia B, Huang W, Wang Y, Zhang P, Wang Z, Zheng M, Wang T (2020) Nogo-C inhibits peripheral nerve regeneration by regulating Schwann cell apoptosis and dedifferentiation. Front Neurosci 14:616258. https://doi.org/10.3389/fnins.2020.616258

    Article  PubMed  Google Scholar 

  29. Chu T, Shields LBE, Zeng W, Zhang YP, Wang Y, Barnes GN, Shields CB, Cai J (2021) Dynamic glial response and crosstalk in demyelination-remyelination and neurodegeneration processes. Neural Regen Res 16(7):1359–1368. https://doi.org/10.4103/1673-5374.300975

    Article  PubMed  Google Scholar 

  30. Wang H, Qu F, Xin T, Sun W, He H, Du L (2021) Ginsenoside compound K promotes proliferation, migration and differentiation of Schwann cells via the activation of MEK/ERK1/2 and PI3K/AKT pathways. Neurochem Res 46(6):1400–1409. https://doi.org/10.1007/s11064-021-03279-0

    Article  CAS  PubMed  Google Scholar 

  31. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181(4):625–637. https://doi.org/10.1083/jcb.200803013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, Nos.82071386, 81870982&81571182; National Key Basic Research Program of China, No. 2014CB542202; the Program for Changjiang Scholars and Innovative Research Team in University of China, No. IRT-16R37; Key Research & Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China, No. 2018GZR110104008; Research Grant of Guangdong Province Key Laboratory of Psychiatric Disorders of China, No. N201904; and Natural Science Foundation of Guangdong Province of China, No. 2017A030312009.

Author information

Authors and Affiliations

Authors

Contributions

Jiasong Guo and Ying Zou designed the research and wrote the manuscript. Ying Zou and Jiaqi Zhang performed experiments with Jingmin Liu, Jiawei Xu, Lanya Fu, and Xianghai Wang assistance. Xinrui Ma, Yizhou Xu, and Shuyi Xu analyzed the data. Jiasong Guo and Jiaqi Zhang critically reviewed and revised the manuscript.

Corresponding author

Correspondence to Jiasong Guo.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Yes.

Ethics Approval

All animal procedures were carried out with the approval of the Southern Medical University Animal Care and Use Committee in accordance with the guidelines for the ethical treatments of animals.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Zhang, J., Liu, J. et al. SIRT6 Negatively Regulates Schwann Cells Dedifferentiation via Targeting c-Jun During Wallerian Degeneration After Peripheral Nerve Injury. Mol Neurobiol 59, 429–444 (2022). https://doi.org/10.1007/s12035-021-02607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02607-3

Keywords

Navigation