Skip to main content

Advertisement

Log in

The Carbonic Anhydrase Inhibitor E7070 Sensitizes Glioblastoma Cells to Radio- and Chemotherapy and Reduces Tumor Growth

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioblastomas (GBMs), the most common and lethal primary brain tumor, show inherent infiltrative nature and high molecular heterogeneity that make complete surgical resection unfeasible and unresponsive to conventional adjuvant therapy. Due to their fast growth rate even under hypoxic and acidic conditions, GBM cells can conserve the intracellular pH at physiological range by overexpressing membrane-bound carbonic anhydrases (CAs). The synthetic sulfonamide E7070 is a potent inhibitor of CAs that harbors putative anticancer properties; however, this drug has still not been tested in GBMs. The present study aimed to evaluate the effects of E7070 on CA9 and CA12 enzymes in GBM cells as well as in the tumor cell growth, migration, invasion, and resistance to radiotherapy and chemotherapy. We found that E7070 treatment significantly reduced tumor cell growth and increased radio- and chemotherapy efficacy against GBM cells under hypoxia. Our data suggests that E7070 has therapeutic potential as a radio-chemo-sensitizing in drug-resistant GBMs, representing an attractive strategy to improve the adjuvant therapy. We showed that CA9 and CA12 represent potentially valuable therapeutic targets that should be further investigated as useful diagnostic and prognostic biomarkers for GBM tailored therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article and additional files.

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, Deimling A, Figarella-Branger D, Cavenee WB et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  3. Johannessen TCA, Bjerkvig R (2012) Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 12(5):635–642

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Miner A, Hennis L, Mittal S (2021) Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist 4:17–43

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kesari S (2011) Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments. Semin Oncol 38(Suppl 4):S2-10

    Article  PubMed  Google Scholar 

  6. Soda Y, Myskiw C, Rommel A, Verma IM (2013) Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl) 91(4):439–448

  7. Ho IAW, Shim WSN (2017) Contribution of the microenvironmental niche to glioblastoma heterogeneity. Biomed Res Int 2017:9634172

  8. Nejad AE, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarina M et al (2021) The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 21:62

    Article  CAS  Google Scholar 

  9. Supuran CT (2018) Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 27:963–970

    Article  CAS  PubMed  Google Scholar 

  10. Haapasalo J, Nordfors K, Haapasalo H, Parkkila S (2020) The expression of carbonic anhydrases II, IX and XII in brain tumors. Cancers (Basel) 12(7):1723

    Article  CAS  Google Scholar 

  11. Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT et al (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp 61:25–41

    Article  CAS  Google Scholar 

  12. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 11(3):83–92

  13. Uribe D, Torres Á, Rocha JD, Niechi I, Oyarzún C, Sobrevia L et al (2017) Multidrug resistance in glioblastoma stem-like cells: role of the hypoxic microenvironment and adenosine signaling. Mol Aspects Med 55:140–151

    Article  CAS  PubMed  Google Scholar 

  14. Angeli A, Carta F, Nocentini A, Winum J-Y, Zaluboskis R, Akdemir A et al (2020) Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites 10(10):412

    Article  CAS  PubMed Central  Google Scholar 

  15. Wang B, Zhao Q, Zhang Y, Liu Z, Zheng Z, Liu S et al (2021) Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J Exp Clin Cancer Res 40(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  16. Becker HM, Deitmer JW (2021) Proton transport in cancer cells: the role of carbonic anhydrases. Int J Mol Sci 22(6):3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Swayampakula M, McDonald PC, Vallejo M, Coyaud E, Chafe SC, Westerback A et al (2017) The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene 36:6244–6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pastorekova S, Gillies RJ (2019) The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev 38(1–2):65–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sedlakova O (2014) Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol 4:400

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pastorek J, Pastorekova S, Zatovicova M (2008) Cancer-associated carbonic anhydrases and their inhibition. Curr Pharm Des 14:685–698

    Article  PubMed  Google Scholar 

  21. Haapasalo J, Hilvo M, Nordfors K et al (2008) Identification of an alternatively spliced isoform of carbonic anhydrase XII in diffusely infiltrating astrocytic gliomas. Neuro Oncol 10:131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Supuran CT (2008) Carbonic anhydrases–an overview. Curr Pharm Des 14:603–614

    Article  CAS  PubMed  Google Scholar 

  23. Said HM, Supuran CT, Hageman C, Staab A, Polat B, Katzer A et al (2010) Modulation of carbonic anhydrase 9 (CA9) in human brain cancer. Curr Pharm Des 16:3288–3299

    Article  CAS  PubMed  Google Scholar 

  24. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund AA, Kyle A et al (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376

    Article  CAS  PubMed  Google Scholar 

  25. Scrideli CA, Carlotti CG, Okamoto OK, Andrade VS, Cortez MAA, Motta FJN et al (2008) Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol 88(3):281–291

    Article  CAS  PubMed  Google Scholar 

  26. Ameis HM, Drenckhan A, Freytag M, Izbicki JR, Supuran CT, Reinshagen K et al (2016) Influence of hypoxia-dependent factors on the progression of neuroblastoma. Pediatr Surg Int 32:187–192

    Article  PubMed  Google Scholar 

  27. McDonald PC, Chafe SC, Brown WS, Saberi S, Swayampakula GV, Nemirosvky O et al (2019) Regulation of pH by carbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia. Gastroenterology 157:823–837

    Article  CAS  PubMed  Google Scholar 

  28. Pérez-Sayáns M, Suárez-Peñaranda JM, Pilar G-D, Supuran CT, Pastorekova S, Barros-Angueira F et al (2012) Expression of CA-IX is associated with advanced stage tumors and poor survival in oral squamous cell carcinoma patients. J Oral Pathol Med 41:667–674

    Article  PubMed  CAS  Google Scholar 

  29. Hsieh M-J, Chen K-S, Chiou H-L, Hsieh Y-S (2010) Carbonic anhydrase XII promotes invasion and migration ability of MDA-MB-231 breast cancer cells through the p38 MAPK signaling pathway. Eur J Cell Biol 89:598–606

    Article  CAS  PubMed  Google Scholar 

  30. Ilie M, Hofman V, Zangari J, Chiche J, Mouroux J, Mazure NM et al (2013) Response of CAIX and CAXII to in vitro re-oxygenation and clinical significance of the combined expression in NSCLC patients. Lung Cancer 82:16–23

    Article  PubMed  Google Scholar 

  31. Winum JY, Innocenti A, Nasr J, Montero J, Scozzafava A, Vullo D, Supuran C (2005) Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with N-hydroxysulfamides - a new zinc-binding function in the design of inhibitors. Bioorganic Med Chem Lett 15:2353–2358

    Article  CAS  Google Scholar 

  32. Kopecka J, Campia I, Jacobs A, Frei AP, Ghigo D, Wollscheid B et al (2015) Carbonic anhydrase XII is a new therapeutic target to overcome chemoresistance in cancer cells. Oncotarget 6:6776–6793

    Article  PubMed  PubMed Central  Google Scholar 

  33. Supuran CT (2016) How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 31:345–360

  34. Said HM, Hagemann C, Carta F, Katzer A, Polat B, Staab A et al (2013) Hypoxia induced CA9 inhibitory targeting by two different sulfonamide derivatives including acetazolamide in human glioblastoma. Bioorg Med Chem 21:3949–3957

    Article  CAS  PubMed  Google Scholar 

  35. McDonald PC, Chia S, Bedard PL, Chu Q, Lyle M, Tang L et al (2020) A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am J Clin Oncol Cancer Clin Trials 43:484–490

    CAS  Google Scholar 

  36. Yamada Y, Yamamoto N, Shimoyama T, Horiike A, Fujisaka Y, Takayama K et al (2005) Phase I pharmacokinetic and pharmacogenomic study of E7070 administered once every 21 days. Cancer Sci 96:721–728

    Article  CAS  PubMed  Google Scholar 

  37. D’Ambrosio K, Vitale RM, Dogné JM, Masereel B, Innocenti A, Scozzafava A et al (2008) Carbonic anhydrase inhibitors: bioreductive nitro-containing sulfonamides with selectivity for targeting the tumor associated isoforms IX and XII. J Med Chem 51:3230–3237

    Article  PubMed  CAS  Google Scholar 

  38. Abbate F, Casini A, Owa T, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorganic Med Chem Lett 14:217–223

    Article  CAS  Google Scholar 

  39. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  CAS  PubMed  Google Scholar 

  40. Fukuoka K, Usuda J, Iwamoto Y, Fukumoto H, Nakamura T, Yoneda T et al (2001) Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non-small cell lung cancer cells. Invest New Drugs 19:219–227

    Article  CAS  PubMed  Google Scholar 

  41. Franken N a P, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  PubMed  Google Scholar 

  42. Tao Y, Zhang P, Frascogna V, Lecluse Y, Auperin A, Bourhis J et al (2007) Enhancement of radiation response by inhibition of Aurora-A kinase using siRNA or a selective Aurora kinase inhibitor PHA680632 in p53-deficient cancer cells. Br J Cancer 97:1664–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Agudelo-Garcia PA, Jesus JK De, Williams SP, Nowicki MO, Chiocca EA, Liyanarachchi S et al (2011) Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia 13:831–840

  44. Valente V, Teixeira SA, Neder L, Okamoto OK, Oba-Shinjo SM, Marie SKN et al (2009) Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol Biol 10:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ozawa Y, Sugi NH, Nagasu T, Owa T, Watanabe T, Koyanagi N et al (2001) E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur J Cancer 37:2275–2282

    Article  CAS  PubMed  Google Scholar 

  46. Hu B, Thirtamara-Rajamani KK, Sim H, Viapiano MS (2009) Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion. Mol Cancer Res 7:1756–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan YW, Allen GI, Liu Z (2016) TCGA2STAT: simple TCGA data access for integrated statistical analysis in R. Bioinformatics 32:952–954

    Article  CAS  PubMed  Google Scholar 

  48. Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM et al (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368

    Article  CAS  PubMed  Google Scholar 

  49. Mboge MY, McKenna RC, Frost S (2016) Advances in anti-cancer drug development targeting carbonic anhydrase IX and XII. Topics in Anti-Cancer Research 5:3–42

    Article  Google Scholar 

  50. Zamanova S, Shabana AM, Mondal UK, Ilies MA (2019) Carbonic anhydrases as disease markers. Expert Opin Ther Pat 29(7):509–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777

    Article  CAS  PubMed  Google Scholar 

  52. Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    Article  CAS  PubMed  Google Scholar 

  53. Ward C, Meehan J, Gray M, Kunkler IH, Langdon SP, Argyle DJ et al (2018) Carbonic anhydrase IX (CAIX), cancer, and radiation responsiveness. Metabolites 8:1–13

    Article  CAS  Google Scholar 

  54. Chiche J, Ricci JE, Pouysségur J (2013) Tumor hypoxia and metabolism - towards novel anticancer approaches. Ann Endocrinol 74:111–114

    Article  CAS  Google Scholar 

  55. Gondi G, Mysliwietz J, Hulikova A, Jen JP, Swietach P, Kremmer E, Zeidler R (2013) Antitumor efficacy of a monoclonal antibody that inhibits the activity of cancer-associated carbonic anhydrase XII. Cancer Res 73:6494–6503

    Article  CAS  PubMed  Google Scholar 

  56. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3(4):294–300

  57. Owa T, Yoshino H, Yoshimatsu K, Nagasu T (2001) Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem 8:1487–1503

    Article  CAS  PubMed  Google Scholar 

  58. Owa T, Yoshino H, Okauchi T, Okabe T, Ozawa Y, Hata Sugi N et al (2002) Synthesis and biological evaluation of N-(7-indolyl)-3-pyridinesulfonamide derivatives as potent antitumor agents. Bioorg Med Chem Lett 12:2097–2100

    Article  CAS  PubMed  Google Scholar 

  59. Ozawa Y, Kusano K, Owa T, Yokoi A, Asada A, Yoshimatsu K (2012) Therapeutic potential and molecular mechanism of a novel sulfonamide anticancer drug, indisulam (E7070) in combination with CPT-11 for cancer treatment. Cancer Chemother Pharmacol 69:1353–1362

    Article  CAS  PubMed  Google Scholar 

  60. Baur M, Gneist M, Owa T, Dittrich C (2007) Clinical complete long-term remission of a patient with metastatic malignant melanoma under therapy with indisulam (E7070). Melanoma Res 17:329–331

    Article  PubMed  Google Scholar 

  61. Talbot DC, von Pawel J, Cattell E, Yule SM, Johnston C, Zandvliet AS et al (2007) A randomized phase II pharmacokinetic and pharmacodynamic study of indisulam as second-line therapy in patients with advanced non-small cell lung cancer. Clin Cancer Res 13:1816–1822

    Article  CAS  PubMed  Google Scholar 

  62. Morris JC, Chiche J, Grellier C, Lopez M, Bornaghi LF, Maresca A et al (2011) Targeting hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII inhibitors. J Med Chem 54:6905–6918

    Article  CAS  PubMed  Google Scholar 

  63. Parkkila S, Rajaniemi H, Parkkila AK, Kivela J, Waheed A, Pastorekova S et al (2000) Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci U S A 97:2220–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ward C, Langdon SP, Mullen P, Harris A, Harrison D, Supuran C, Kunkler I (2013) New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev 39:171–179

    Article  CAS  PubMed  Google Scholar 

  65. Gieling R, Williams K (2013) Carbonic anhydrase IX as a target for metastatic disease. Bioorg Med Chem 21:1470–1476

    Article  CAS  PubMed  Google Scholar 

  66. Boyd NH, Walker K, Fried J, Hackney JR, McDonald GAB, Spina R et al (2017) Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo. JCI insight 2(24):e92928

    Article  PubMed Central  Google Scholar 

  67. Vartanian A, Singh SK, Agnihotri S, Jalali S, Burrell K, Aldape KD et al (2014) GBM’s multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro Oncol 16(9):1167–1175

  68. Sethi KK, Verma SM, Tanç M, Purper G, Calafato G, Carta F, Supuran CT (2014) Carbonic anhydrase inhibitors: synthesis and inhibition of the human carbonic anhydrase isoforms I, II, IX and XII with benzene sulfonamides incorporating 4- and 3-nitrophthalimide moieties. Bioorganic Med Chem 22:1586–1595

    Article  CAS  Google Scholar 

  69. Dubois L, Peeters SGJA, Van Kuijk SJA, Yaromina A, Lieuwes NG, Saraya R et al (2013) Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: a new concept of dual targeting drugs. Radiother Oncol 108:523–528

    Article  CAS  PubMed  Google Scholar 

  70. Andreucci E, Ruzzolini J, Peppicelli S, Bianchini AL, Carta F, Supuran CT, Calorini L (2019) The carbonic anhydrase IX inhibitor SLC-0111 sensitises cancer cells to conventional chemotherapy. J Enzyme Inhib Med Chem 34:117–123

    Article  CAS  PubMed  Google Scholar 

  71. McIntyre A, Patiar S, Wigfield S, Ledaki I, Turley H, Leek R et al (2012) Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res 18:3100–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772

    Article  CAS  PubMed  Google Scholar 

  73. Stupp R, Dietrich PY, Kraljevic SO, Pica A, Maillard I, Maeder P et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20:1375–1382

    Article  CAS  PubMed  Google Scholar 

  74. Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  75. Qiu ZK, Shen D, Chen YS, Yang QY, Guo CC, Feng BH et al (2014) Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin J Cancer 33:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boyd NH, Tran AN, Bernstock JD, Etminam T, Jones AB, Gillespie GY et al (2021) Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 11(2):665–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Giannini C (2005) Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 7:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gkogkou C, Frangia K, Saif MW, Trigidou R, Syrigos K (2014) Necrosis and apoptotic index as prognostic factors in non-small cell lung carcinoma: a review. Springerplus 3:120

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dittrich C, Zandvliet a S, Gneist M, Huitema AD, King AA, Wanders J (2007) A phase I and pharmacokinetic study of indisulam in combination with carboplatin. Br J Cancer 96:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Assi R, Kantarjian HM, Kadia TM, Pemmaraju N, Jabbour E, Jain N et al (2018) Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124:2758–2765

    Article  CAS  PubMed  Google Scholar 

  81. Kil WJ, Tofilon PJ, Camphausen K (2012) Post-radiation increase in VEGF enhances glioma cell motility in vitro. Radiat Oncol 7:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yano S, Miwa S, Mii S, Hiroshima Y, Uehara F, Yamamoto M et al (2014) Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging. Cell Cycle 13:953–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Aguinaldo Luiz Simões for providing the authentication of the cell lines. We thank Prof. Dr. Eduardo Magalhães Rego, Cleide Lúcia Araújo Silva, and Prajna Behera for providing animal assistance.

Funding

This research was supported by grants from The São Paulo Research Foundation (FAPESP), process numbers 2011/05957–6, 2011/07448–1, and 2014/08899–5.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Silvia A. Teixeira, Augusto F. Andrade, Julia A. Pezuk, and Veridiana K. Suazo designed, performed, and analyzed in vitro experiments. Silvia Teixeira, Augusto F. Andrade, Julia A. Pezuk, Mariano S. Viapiano, and Mohan S. Nandhu designed, and provided assistance with animal surgery and reagent preparation. Mariano S. Viapiano and Mohan S. Nandhu provided assistance to cell migration and radiotherapy experiments and orthotopic models. Aline P. Becker and Luciano Neder analyzed H&E slides. Lucas T. Bidinotto performed in silico analysis. The manuscript was written or reviewed by Silvia A. Teixeira, Augusto F. de Andrade, Mariano Sebastian Viapiano, Carlos G. Carlotti, Luiz G. Tone, and Carlos Alberto Scrideli. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Silvia A. Teixeira.

Ethics declarations

Ethical Approval

All procedures involving animals were performed in accordance Institutional Commission of Ethics in Animal Research (CETEA) at the Ribeirão Preto Medical School, University of São Paulo (São Paulo, SP, Brazil) and Institutional Animal Care and Use Committees at Harvard Medical School/Brigham and Women's Hospital (HMA-IACUC—Boston, MA, USA). The study was carried out in compliance with the ARRIVE guidelines.

Consent for Publication

All authors consent to the publication of current data.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 710 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, S.A., Viapiano, M.S., Andrade, A.F. et al. The Carbonic Anhydrase Inhibitor E7070 Sensitizes Glioblastoma Cells to Radio- and Chemotherapy and Reduces Tumor Growth . Mol Neurobiol 58, 4520–4534 (2021). https://doi.org/10.1007/s12035-021-02437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02437-3

Keywords

Navigation