Skip to main content
Log in

Withaferin A Induces Heat Shock Response and Ameliorates Disease Progression in a Mouse Model of Huntington’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Impairment of proteostasis network is one of the characteristic features of many age-related neurodegenerative disorders including autosomal dominantly inherited Huntington’s disease (HD). In HD, N-terminal portion of mutant huntingtin protein containing expanded polyglutamine repeats accumulates as inclusion bodies and leads to progressive deterioration of various cellular functioning including proteostasis network. Here we report that Withaferin A (a small bioactive molecule derived from Indian medicinal plant, Withania somnifera) partially rescues defective proteostasis by activating heat shock response (HSR) and delays the disease progression in a HD mouse model. Exposure of Withaferin A activates HSF1 and induces the expression of HSP70 chaperones in an in vitro cell culture system and also suppresses mutant huntingtin aggregation in a cellular model of HD. Withaferin A treatment to HD mice considerably increased their lifespan as well as restored progressive motor behavioral deficits and declined body weight. Biochemical studies confirmed the activation of HSR and global decrease in mutant huntingtin aggregates load accompanied with improvement of striatal function in Withaferin A-treated HD mouse brain. Withaferin A-treated HD mice also exhibit significant decrease in inflammatory processes as evident from the decreased microglial activation. These results indicate immense potential of Withaferin A for the treatment of HD and related neurodegenerative disorders involving protein misfolding and aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available by the corresponding author on request.

All experiments were conducted in accordance with the strict guidelines outlined by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forestry, Government of India, and were approved by the Institutional Animal Ethics Committee of the National Brain Research Centre (protocol number NBRC/IAEC/2019/154).

References

  1. Mendez MF (1994) Huntington’s disease: update and review of neuropsychiatric aspects. Int J Psychiatry Med 24(3):189–208. https://doi.org/10.2190/HU6W-3K7Q-NAEL-XU6K

    Article  CAS  PubMed  Google Scholar 

  2. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA et al (2015) Huntington disease Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  3. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983. https://doi.org/10.1016/0092-8674(93)90585-E

    Article  Google Scholar 

  4. Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P et al (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13(4):442–449. https://doi.org/10.1038/ng0896-442

    Article  CAS  PubMed  Google Scholar 

  5. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993

    Article  CAS  Google Scholar 

  6. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621. https://doi.org/10.1146/annurev.neuro.29.051605.113042

    Article  CAS  PubMed  Google Scholar 

  7. Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 5(10):958–963. https://doi.org/10.1038/sj.embor.7400250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hedreen JC, Folstein SE (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 54(1):105–120

    Article  CAS  Google Scholar 

  9. Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227(4688):770–773

    Article  CAS  Google Scholar 

  10. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577

    Article  CAS  Google Scholar 

  11. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743–755. https://doi.org/10.1038/nrg1691

    Article  CAS  PubMed  Google Scholar 

  12. Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443(7113):774–779. https://doi.org/10.1038/nature05290

    Article  CAS  PubMed  Google Scholar 

  13. Margulis J, Finkbeiner S (2014) Proteostasis in striatal cells and selective neurodegeneration in Huntington’s disease. Front Cell Neurosci 8:218. https://doi.org/10.3389/fncel.2014.00218

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubinsztein DC, Carmichael J (2003) Huntington’s disease: molecular basis of neurodegeneration. Expert Rev Mol Med 5(20):1–21. https://doi.org/10.1017/S1462399403006549

    Article  PubMed  Google Scholar 

  15. Jana NR, Nukina N (2003) Recent advances in understanding the pathogenesis of polyglutamine diseases: involvement of molecular chaperones and ubiquitin-proteasome pathway. J Chem Neuroanat 26(2):95–101

    Article  CAS  Google Scholar 

  16. Samant RS, Livingston CM, Sontag EM, Frydman J (2018) Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control. Nature 563(7731):407–411. https://doi.org/10.1038/s41586-018-0678-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448(7154):704–708

    Article  CAS  Google Scholar 

  18. Wang J, Wang CE, Orr A, Tydlacka S, Li SH, Li XJ (2008) Impaired ubiquitin-proteasome system activity in the synapses of Huntington’s disease mice. J Cell Biol 180(6):1177–1189

    Article  CAS  Google Scholar 

  19. Jana NR, Zemskov EA, Wang G, Nukina N (2001) Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 10(10):1049–1059

    Article  CAS  Google Scholar 

  20. Cortes CJ, La Spada AR (2014) The many faces of autophagy dysfunction in Huntington’s disease: from mechanism to therapy. Drug Discov Today 19(7):963–971

    Article  CAS  Google Scholar 

  21. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16(1):46–56

    Article  CAS  Google Scholar 

  22. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

    Article  CAS  Google Scholar 

  23. Pinho BR, Duarte AI, Canas PM, Moreira PI, Murphy MP, Oliveira JMA (2020) The interplay between redox signalling and proteostasis in neurodegeneration: in vivo effects of a mitochondria-targeted antioxidant in Huntington’s disease mice. Free Radic Biol Med 146:372–382. https://doi.org/10.1016/j.freeradbiomed.2019.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. https://doi.org/10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  25. Koyuncu S, Saez I, Lee HJ, Gutierrez-Garcia R, Pokrzywa W, Fatima A, Hoppe T, Vilchez D (2018) The ubiquitin ligase UBR5 suppresses proteostasis collapse in pluripotent stem cells from Huntington’s disease patients. Nat Commun 9(1):2886. https://doi.org/10.1038/s41467-018-05320-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soares TR, Reis SD, Pinho BR, Duchen MR, Oliveira JMA (2019) Targeting the proteostasis network in Huntington’s disease. Ageing Res Rev 49:92–103. https://doi.org/10.1016/j.arr.2018.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, Nukina N, Jana NR (2014) Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Hum Mol Genet 23(10):2737–2751

    Article  CAS  Google Scholar 

  28. Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10(12):930–944

    Article  CAS  Google Scholar 

  29. Singh BK, Vatsa N, Nelson VK, Kumar V, Kumar SS, Mandal SC, Pal M, Jana NR (2018) Azadiradione restores protein quality control and ameliorates the disease pathogenesis in a mouse model of Huntington’s disease. Mol Neurobiol 55(8):6337–6346. https://doi.org/10.1007/s12035-017-0853-3

    Article  CAS  PubMed  Google Scholar 

  30. Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A et al (2017) Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat Commun 8:14405

    Article  CAS  Google Scholar 

  31. Chafekar SM, Duennwald ML (2012) Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS ONE 7(5):e37929. https://doi.org/10.1371/journal.pone.0037929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujimoto M, Takaki E, Hayashi T, Kitaura Y, Tanaka Y, Inouye S, Nakai A (2005) Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem 280(41):34908–34916

    Article  CAS  Google Scholar 

  33. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10(12):1307–1315

    Article  CAS  Google Scholar 

  34. Labbadia J, Cunliffe H, Weiss A, Katsyuba E, Sathasivam K, Seredenina T, Woodman B, Moussaoui S et al (2011) Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest 121(8):3306–3319

    Article  CAS  Google Scholar 

  35. Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56053–56060

    Article  CAS  Google Scholar 

  36. Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5(4):334–346

    CAS  PubMed  Google Scholar 

  37. Kuboyama T, Tohda C, Komatsu K (2014) Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull 37(6):892–897. https://doi.org/10.1248/bpb.b14-00022

    Article  CAS  PubMed  Google Scholar 

  38. Swarup V, Phaneuf D, Dupre N, Petri S, Strong M, Kriz J, Julien JP (2011) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J Exp Med 208(12):2429–2447. https://doi.org/10.1084/jem.20111313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel P, Julien JP, Kriz J (2015) Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics 12(1):217–233. https://doi.org/10.1007/s13311-014-0311-0

    Article  CAS  PubMed  Google Scholar 

  40. Dutta K, Patel P, Julien JP (2018) Protective effects of Withania somnifera extract in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Exp Neurol 309:193–204. https://doi.org/10.1016/j.expneurol.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  41. Dutta K, Patel P, Rahimian R, Phaneuf D, Julien JP (2017) Withania somnifera reverses transactive response DNA binding protein 43 proteinopathy in a mouse model of amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neurotherapeutics 14(2):447–462. https://doi.org/10.1007/s13311-016-0499-2

    Article  CAS  PubMed  Google Scholar 

  42. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A 109(9):3510–3515. https://doi.org/10.1073/pnas.1112209109

    Article  PubMed  PubMed Central  Google Scholar 

  43. Santagata S, Xu YM, Wijeratne EM, Kontnik R, Rooney C, Perley CC, Kwon H, Clardy J, Kesari S, Whitesell L, Lindquist S, Gunatilaka AA (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7(2):340–349. https://doi.org/10.1021/cb200353m

    Article  CAS  PubMed  Google Scholar 

  44. Khan S, Rammeloo AW, Heikkila JJ (2012) Withaferin A induces proteasome inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of thermotolerance. PLoS ONE 7(11):e50547. https://doi.org/10.1371/journal.pone.0050547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maheshwari M, Shekhar S, Singh BK, Jamal I, Vatsa N, Kumar V, Sharma A, Jana NR (2014) Deficiency of Ube3a in Huntington’s disease mice brain increases aggregate load and accelerates disease pathology. Hum Mol Genet 23(23):6235–6245

    Article  CAS  Google Scholar 

  46. Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagace M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, Calon F, Lacroix S, Gowland PA, Francis ST, Barker RA, Cicchetti F (2015) Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 78(2):160–177. https://doi.org/10.1002/ana.24406

    Article  PubMed  Google Scholar 

  47. Pido-Lopez J, Tanudjojo B, Farag S, Bondulich MK, Andre R, Tabrizi SJ, Bates GP (2019) Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington’s disease by etanercept treatment. Sci Rep 9(1):7202. https://doi.org/10.1038/s41598-019-43627-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI (2004) Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J 23(21):4307–4318. https://doi.org/10.1038/sj.emboj.7600426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9(13):2009–2018. https://doi.org/10.1093/hmg/9.13.2009

    Article  CAS  PubMed  Google Scholar 

  50. Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, Mahal A, Smith DL, Woodman B, Bates GP (2004) Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13(13):1389–1405. https://doi.org/10.1093/hmg/ddh144

    Article  CAS  PubMed  Google Scholar 

  51. Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H, Seredenina T, Arbez N, Zhu S, Sommers K, Qian J, Zhang J, Mori S, Yang XW, Tamashiro KL, Aja S, Moran TH, Luthi-Carter R, Martin B, Maudsley S, Mattson MP, Cichewicz RH, Ross CA, Holtzman DM, Krainc D, Duan W (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18(1):153–158. https://doi.org/10.1038/nm.2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reynolds RH, Petersen MH, Willert CW, Heinrich M, Nymann N, Dall M, Treebak JT, Bjorkqvist M, Silahtaroglu A, Hasholt L, Norremolle A (2018) Perturbations in the p53/miR-34a/SIRT1 pathway in the R6/2 Huntington’s disease model. Mol Cell Neurosci 88:118–129. https://doi.org/10.1016/j.mcn.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  53. Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283(38):26188–26197

    Article  CAS  Google Scholar 

  54. Matai L, Sarkar GC, Chamoli M, Malik Y, Kumar SS, Rautela U, Jana NR, Chakraborty K, Mukhopadhyay A (2019) Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis. Proc Natl Acad Sci U S A 116(35):17383–17392. https://doi.org/10.1073/pnas.1900055116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dar NJ, Ahmad Muzamil (2020) Neurodegenerative diseases and Withaniasomnifera (L.): an update. J Ethnopharmacol 256:112769. https://doi.org/10.1016/j.jep.2020.112769

    Article  CAS  PubMed  Google Scholar 

  56. Kumar S, Phaneuf D, Julien JP (2020) Withaferin-A treatment alleviates TAR DNA-binding protein-43 pathology and improves cognitive function in a mouse model of FTLD. Neurotherapeutics. https://doi.org/10.1007/s13311-020-00952-0

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heyninck K, Lahtela-Kakkonen M, Van der Veken P, Haegeman G, Vanden Berghe W (2014) Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKbeta. Biochem Pharmacol 91(4):501–509. https://doi.org/10.1016/j.bcp.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  58. White PT, Subramanian C, Motiwala HF, Cohen MS (2016) Natural withanolides in the treatment of chronic diseases. Adv Exp Med Biol 928:329–373. https://doi.org/10.1007/978-3-319-41334-1_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Moller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205(8):1869–1877. https://doi.org/10.1084/jem.20080178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trager U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, McKinnon C, Sirinathsinghji E, Kahlon S, Pfister EL, Moser R, Hummerich H, Antoniou M, Bates GP, Luthi-Carter R, Lowdell MW, Bjorkqvist M, Ostroff GR, Aronin N, Tabrizi SJ (2014) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain 137(Pt 3):819–833. https://doi.org/10.1093/brain/awt355

    Article  PubMed  PubMed Central  Google Scholar 

  61. Valadao PAC, Santos KBS, Ferreira EVTH, Macedo ECT, Teixeira AL, Guatimosim C, de Miranda AS (2020) Inflammation in Huntington’s disease: a few new twists on an old tale. J Neuroimmunol 348:577380. https://doi.org/10.1016/j.jneuroim.2020.577380

    Article  CAS  PubMed  Google Scholar 

  62. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24(37):7999–8008. https://doi.org/10.1523/JNEUROSCI.2675-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O’Rourke JG, Khashwji H, Lukacsovich T, Zhu YZ, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS (2009) IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 187(7):1083–1099. https://doi.org/10.1083/jcb.200909067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y (2013) A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum Mol Genet 22(9):1826–1842. https://doi.org/10.1093/hmg/ddt036

    Article  CAS  PubMed  Google Scholar 

  65. Vigont VA, Grekhnev DA, Lebedeva OS, Gusev KO, Volovikov EA, Skopin AY, Bogomazova AN, Shuvalova LD, Zubkova OA, Khomyakova EA, Glushankova LN, Klyushnikov SA, Illarioshkin SN, Lagarkova MA, Kaznacheyeva EV (2021) STIM2 mediates excessive store-operated calcium entry in patient-specific iPSC-derived neurons modeling a juvenile form of Huntington’s disease. Front Cell DevBiol 9:625231. https://doi.org/10.3389/fcell.2021.625231

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Mr. Mahendra Kumar Singh for his technical assistance.

Funding

This work was supported by a common research grant from BRICS countries involving India (Department of Science and Technology, reference number DST/IMRCD/BRICS/Neurotherapy/2017) and Russia (The Russian Foundation for Basic Research, grant number 17–54-80006) as well as from the core grant of NBRC provided by Department of Biotechnology, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed study conception and design. Experimentations were performed by Tripti Joshi and Vipendra Kumar; data were analyzed by Tripti Joshi and Nihar Ranjan Jana. The first draft of the manuscript was written by Nihar Ranjan Jana and all authors read, commented and approved the final manuscript.

Corresponding author

Correspondence to Nihar Ranjan Jana.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, T., Kumar, V., Kaznacheyeva, E.V. et al. Withaferin A Induces Heat Shock Response and Ameliorates Disease Progression in a Mouse Model of Huntington’s Disease. Mol Neurobiol 58, 3992–4006 (2021). https://doi.org/10.1007/s12035-021-02397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02397-8

Keywords

Navigation