Skip to main content
Log in

α-Synuclein Promotes Maturation of Immature Juxtaglomerular Neurons in the Mouse Olfactory Bulb

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

α-Synuclein (αSyn), the major constituent of Lewy bodies and Lewy neurites, is generally expressed in presynapses and is involved in synaptic function. However, we previously demonstrated that some neurons, including those in the olfactory bulb, show high αSyn expression levels in the cell body under normal conditions. αSyn is also known to be important for adult neurogenesis. Thus, in present study, we examined the role of αSyn in juxtaglomerular neurons (JGNs) with high αSyn expression in the mouse olfactory bulb. Most αSyn-enriched JGNs expressed sex-determining region Y-box 2 (Sox2), which functions to maintain neural immature identity. Interestingly, in αSyn homozygous (-/-) knockout (KO) mice, Sox2-positive JGNs were significantly increased compared with heterozygous (+/-) KO mice. Following global brain ischemia using wild-type mice, there was also a significant decrease in Sox2-positive JGNs, and in the co-expression ratio of Sox2 in αSyn-enriched JGNs. By contrast, the co-expression ratio of neuronal nuclei (NeuN, mature neuronal marker) was significantly increased in αSyn-enriched JGNs. However, this ischemia-induced decrease of Sox2-positive JGNs was not observed in αSyn homozygous KO mice. Overall, these data suggest that αSyn functions to promote the maturation of immature JGNs in the mouse olfactory bulb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252. https://doi.org/10.1016/S0896-6273(00)80886-7

    Article  PubMed  CAS  Google Scholar 

  2. Aungst JL, Heyward PM, Puche AC, Karnup SV, Hayar A, Szabo G, Shipley MT (2003) Centre-surround inhibition among olfactory bulb glomeruli. Nature 426(6967):623–629. https://doi.org/10.1038/nature02185nature02185

    Article  PubMed  CAS  Google Scholar 

  3. Benito N, Gaborieau E, Sanz Diez A, Kosar S, Foucault L, Raineteau O, De Saint JD (2018) A pool of postnatally generated interneurons persists in an immature stage in the olfactory bulb. J Neurosci 38(46):9870–9882. https://doi.org/10.1523/JNEUROSCI.1216-18.2018JNEUROSCI.1216-18.2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22 (4):589-599 e585. doi:S1934-5909(18)30121-8 [pii]10.1016/j.stem.2018.03.015

  5. Bonfanti L, Nacher J (2012) New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 98(1):1–15. https://doi.org/10.1016/j.pneurobio.2012.05.002S0301-0082(12)00069-X

    Article  PubMed  Google Scholar 

  6. Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6(11):1162–1168. https://doi.org/10.1038/nn1131nn1131

    Article  PubMed  CAS  Google Scholar 

  7. Dickson DW (2001) Alpha-synuclein and the Lewy body disorders. Curr Opin Neurol 14(4):423–432. https://doi.org/10.1097/00019052-200108000-00001

    Article  PubMed  CAS  Google Scholar 

  8. Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46(3):527–552. https://doi.org/10.1016/j.nbd.2011.10.026S0969-9961(11)00358-5

    Article  PubMed  Google Scholar 

  9. Duda JE (2010) Olfactory system pathology as a model of Lewy neurodegenerative disease. J Neurol Sci 289(1-2):49–54. https://doi.org/10.1016/j.jns.2009.08.042S0022-510X(09)00821-1

    Article  PubMed  CAS  Google Scholar 

  10. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317. https://doi.org/10.1038/3305

    Article  PubMed  CAS  Google Scholar 

  11. Goedert M (2015) Neurodegeneration. Alzheimer’s and Parkinson's diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 349 (6248):1255555. doi:10.1126/science.12555551255555 [pii]349/6248/1255555

  12. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765. https://doi.org/10.1016/S0896-6273(03)00497-5

    Article  PubMed  CAS  Google Scholar 

  13. Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50(2-3):83–107. https://doi.org/10.1016/S0301-0082(96)00021-4

    Article  PubMed  CAS  Google Scholar 

  14. Kim T, Mehta SL, Kaimal B, Lyons K, Dempsey RJ, Vemuganti R (2016) Poststroke induction of alpha-synuclein mediates ischemic brain damage. J Neurosci 36(26):7055–7065. https://doi.org/10.1523/JNEUROSCI.1241-16.201636/26/7055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B et al (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5(1):e8809. https://doi.org/10.1371/journal.pone.0008809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kosaka T, Kosaka K (2011) “Interneurons” in the olfactory bulb revisited. Neurosci Res 69(2):93–99. https://doi.org/10.1016/j.neures.2010.10.002S0168-0102(10)02814-2

    Article  PubMed  CAS  Google Scholar 

  17. Kosaka T, Kosaka K (2016) Neuronal organization of the main olfactory bulb revisited. Anat Sci Int 91(2):115–127. https://doi.org/10.1007/s12565-015-0309-710.1007/s12565-015-0309-7

    Article  PubMed  Google Scholar 

  18. Kosaka K, Toida K, Aika Y, Kosaka T (1998) How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci Res 30(2). https://doi.org/10.1016/S0168-0102(98)00002-9

    Article  CAS  PubMed  Google Scholar 

  19. Langenfurth A, Gu S, Bautze V, Zhang C, Neumann JE, Schuller U, Stock K, Wolf SA et al (2016) Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream. Sci Rep 6:32203. https://doi.org/10.1038/srep32203srep32203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC (2015) Neural stem cells in Parkinson’s disease: a role for neurogenesis defects in onset and progression. Cell Mol Life Sci 72(4):773–797. https://doi.org/10.1007/s00018-014-1774-1

    Article  PubMed  CAS  Google Scholar 

  21. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953. https://doi.org/10.1126/science.1227157338/6109/949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. https://doi.org/10.1016/j.neuron.2011.05.001S0896-6273(11)00348-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mochizuki H, Choong CJ, Masliah E (2018) A refined concept: alpha-synuclein dysregulation disease. Neurochem Int 119:84–96. https://doi.org/10.1016/j.neuint.2017.12.011

    Article  PubMed  CAS  Google Scholar 

  24. Okano HJ, Darnell RB (1997) A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci 17(9):3024–3037. https://doi.org/10.1523/JNEUROSCI.17-09-03024.1997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501(6):825–836. https://doi.org/10.1002/cne.21205

    Article  PubMed  CAS  Google Scholar 

  26. Piumatti M, Palazzo O, La Rosa C, Crociara P, Parolisi R, Luzzati F, Levy F, Bonfanti L (2018) Non-newly generated, “immature” neurons in the sheep brain are not restricted to cerebral cortex. J Neurosci 38(4):826–842. https://doi.org/10.1523/JNEUROSCI.1781-17.2017JNEUROSCI.1781-17.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pontarelli F, Ofengeim D, Zukin RS, Jonas EA (2012) Mouse transient global ischemia two-vessel occlusion model. Bio Protoc 2(18). https://doi.org/10.21769/BioProtoc.262

  28. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stefanis L (2012) alpha-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2 (2):a009399. https://doi.org/10.1101/cshperspect.a009399a009399

  30. Taguchi K, Watanabe Y, Tsujimura A, Tatebe H, Miyata S, Tokuda T, Mizuno T, Tanaka M (2014) Differential expression of alpha-synuclein in hippocampal neurons. PLoS One 9(2):e89327. https://doi.org/10.1371/journal.pone.0089327PONE-D-13-41043

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taguchi K, Watanabe Y, Tsujimura A, Tanaka M (2016) Brain region-dependent differential expression of alpha-synuclein. J Comp Neurol 524(6):1236–1258. https://doi.org/10.1002/cne.23901

    Article  CAS  PubMed  Google Scholar 

  32. Taguchi K, Watanabe Y, Tsujimura A, Tanaka M (2018) Expression of alpha-synuclein is regulated in a neuronal cell type-dependent manner. Anat Sci Int. https://doi.org/10.1007/s12565-018-0464-810.1007/s12565-018-0464-8

  33. Totterdell S, Meredith GE (2005) Localization of alpha-synuclein to identified fibers and synapses in the normal mouse brain. Neuroscience 135(3):907–913. https://doi.org/10.1016/j.neuroscience.2005.06.047

    Article  PubMed  CAS  Google Scholar 

  34. Totterdell S, Hanger D, Meredith GE (2004) The ultrastructural distribution of alpha-synuclein-like protein in normal mouse brain. Brain Res 1004(1-2):61–72. https://doi.org/10.1016/j.brainres.2003.10.072S0006899304000873

    Article  PubMed  CAS  Google Scholar 

  35. Vivacqua G, Casini A, Vaccaro R, Fornai F, Yu S, D'Este L (2011) Different sub-cellular localization of alpha-synuclein in the C57BL\6J mouse’s central nervous system by two novel monoclonal antibodies. J Chem Neuroanat 41(2):97–110. https://doi.org/10.1016/j.jchemneu.2010.12.003S0891-0618(10)00173-0

    Article  PubMed  CAS  Google Scholar 

  36. Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63(11):1155–1166. https://doi.org/10.1093/jnen/63.11.1155

    Article  PubMed  CAS  Google Scholar 

  37. Winner B, Regensburger M, Schreglmann S, Boyer L, Prots I, Rockenstein E, Mante M, Zhao C et al (2012) Role of alpha-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci 32(47):16906–16916. https://doi.org/10.1523/JNEUROSCI.2723-12.201232/47/16906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Withers GS, George JM, Banker GA, Clayton DF (1997) Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res Dev Brain Res 99(1):87–94. https://doi.org/10.1016/S0165-3806(96)00210-6

    Article  PubMed  CAS  Google Scholar 

  39. Yoon DK, Hwang IK, Yoo KY, Lee YB, Lee JJ, Kim JH, Kang TC, Lee BH et al (2006) Comparison of alpha-synuclein immunoreactivity and protein levels in ischemic hippocampal CA1 region between adult and aged gerbils and correlation with Cu,Zn-superoxide dismutase. Neurosci Res 55(4):434–441. https://doi.org/10.1016/j.neures.2006.04.014 https://doi.org/10.1109/IEMBS.2006.260194

  40. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. https://doi.org/10.1016/j.cell.2008.01.033S0092-8674(08)00134-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Kanji Yoshimoto (Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Japan) for instruction on basic surgical techniques for the two-vessel occlusion model.

Funding

This study was supported by a scientific research grant from the Japan Society for Promotion of Science (KT; Grant number 16K21283).

Author information

Authors and Affiliations

Authors

Contributions

KT and MT: conceived and designed the experiments, and wrote the manuscript; KT: performed the experiments; YW and AT: contributed to data analysis and discussion.

Corresponding author

Correspondence to Masaki Tanaka.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors. Animal experiments were performed in accordance with the Guidelines for Animal Experiments, Kyoto Prefectural University of Medicine and national regulations as described in the section of materials and methods.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 6748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, K., Watanabe, Y., Tsujimura, A. et al. α-Synuclein Promotes Maturation of Immature Juxtaglomerular Neurons in the Mouse Olfactory Bulb. Mol Neurobiol 57, 1291–1304 (2020). https://doi.org/10.1007/s12035-019-01814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01814-3

Keywords

Navigation