Skip to main content
Log in

Structural Asymmetry in the Frontal and Temporal Lobes Is Associated with PCSK6 VNTR Polymorphism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The nodal cascade influences the development of bodily asymmetries in humans and other vertebrates. The gene PCSK6 has shown a regulatory function during left-right axis formation and is therefore thought to influence bodily left-right asymmetries. However, it is not clear if variation in this gene is also associated with structural asymmetries in the brain. We genotyped an intronic 33bp PCSK6 variable number tandem repeat (VNTR) polymorphism that has been associated with handedness in a cohort of healthy adults. We acquired T1-weighted structural MRI images of 320 participants and defined cortical surface and thickness for each HCP region. The results demonstrate a significant association between PCSK6 VNTR genotypes and gray matter asymmetry in the superior temporal sulcus, which is involved in voice perception. Heterozygous individuals who carry a short (≤ 6 repeats) and a long (≥ 9 repeats) PCSK6 VNTR allele show stronger rightward asymmetry. Further associations were evident in the dorsolateral prefrontal cortex. Here, individuals homozygous for short alleles show a more pronounced asymmetry. This shows that PCSK6, a gene that has been implicated in the ontogenesis of bodily asymmetries by regulating the nodal cascade, is also relevant for structural asymmetries in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SNP:

single nucleotid polymorphism

VNTR:

variable number tandem repeat

PCR:

polymerase chain reaction

HCPMMP:

human connectome project’s multi-modal parcellation

LQ:

lateralization quotient

STSda:

superior temporal sulcus dorsal anterior

9-46d:

central portion of the dorsolateral prefrontal cortex

PT:

planum temporale

References

  1. Ocklenburg S, Gunturkun O (2017) The lateralized brain: the neuroscience and evolution of hemispheric asymmetries. Academic Press

  2. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589 discussion 589-633

    PubMed  Google Scholar 

  3. Vallortigara G, Versace E (2017) Laterality at the neural, cognitive, and behavioral levels. In: Call J (ed) APA handbook of comparative psychology: basic concepts, methods, neural substrate, and behavior. American Psychological Association, Washington, pp. 557–577

    Google Scholar 

  4. Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, Cambridge

    Google Scholar 

  5. Tzourio-Mazoyer N, Seghier ML (2016) The neural bases of hemispheric specialization. Neuropsychologia 93:319–324

    PubMed  Google Scholar 

  6. Corballis MC (2003) From mouth to hand: gesture, speech, and the evolution of right-handedness. Behav Brain Sci 26

  7. Brandler WM, Paracchini S (2014) The genetic relationship between handedness and neurodevelopmental disorders. Trends Mol Med 20:83–90

    PubMed  PubMed Central  Google Scholar 

  8. Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28:399–409

    CAS  PubMed  Google Scholar 

  9. Concha ML, Wilson SW (2001) Asymmetry in the epithalamus of vertebrates. J Anat 199:63–84

    CAS  PubMed  Google Scholar 

  10. Ocklenburg S, Schmitz J, Moinfar Z, Moser D, Klose R, Lor S, Kunz G, Tegenthoff M et al (2017) Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. eLife 6

  11. Blum M, Schweickert A, Vick P, Wright CVE, Danilchik MV (2014) Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 393:109–123

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    CAS  PubMed  Google Scholar 

  13. Babu D, Roy S (2013) Left-right asymmetry: cilia stir up new surprises in the node. Open Biol 3:130052

    PubMed  PubMed Central  Google Scholar 

  14. Delling M, Indzhykulian AA, Liu X, Li Y, Xie T, Corey DP, Clapham DE (2016) Primary cilia are not calcium-responsive mechanosensors. Nature 531:656–660

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature 435:172–177

    CAS  PubMed  Google Scholar 

  16. Yoshiba S, Hamada H (2014) Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet 30:10–17

    CAS  PubMed  Google Scholar 

  17. Mercola M, Levin M (2001) Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 17:779–805

    CAS  PubMed  Google Scholar 

  18. Sha X, Brunner AM, Purchio AF, Gentry LE (1989) Transforming growth factor beta 1: importance of glycosylation and acidic proteases for processing and secretion. Mol Endocrinol (Baltimore, Md) 3:1090–1098

    CAS  Google Scholar 

  19. Constam DB, Robertson EJ (2000) SPC4/PACE4 regulates a TGFbeta signaling network during axis formation. Genes Dev 14:1146–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Scerri TS, Brandler WM, Paracchini S, Morris AP, Ring SM, Richardson AJ, Talcott JB, Stein J et al (2011) PCSK6 is associated with handedness in individuals with dyslexia. Hum Mol Genet 20:608–614

    CAS  PubMed  Google Scholar 

  21. Brandler WM, Morris AP, Evans DM, Scerri TS, Kemp JP, Timpson NJ, St Pourcain B, Smith GD et al (2013) Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genet 9:e1003751

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Arning L, Ocklenburg S, Schulz S, Ness V, Gerding WM, Hengstler JG, Falkenstein M, Epplen JT et al (2013) PCSK6 VNTR polymorphism is associated with degree of handedness but not direction of handedness. PLoS One 8:e67251

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson KJ, Hurd PL, Read S, Crespi BJ (2016) The PCSK6 gene is associated with handedness, the autism spectrum, and magical ideation in a non-clinical population. Neuropsychologia 84:205–212

    PubMed  Google Scholar 

  24. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    CAS  Google Scholar 

  25. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194

    CAS  PubMed  Google Scholar 

  26. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171 EP

    Google Scholar 

  27. Zhang L, Shu H, Zhou F, Wang X, Li P (2010) Common and distinct neural substrates for the perception of speech rhythm and intonation. Hum Brain Mapp 31:1106–1116

    PubMed  Google Scholar 

  28. Kriegstein KV, Giraud A-L (2004) Distinct functional substrates along the right superior temporal sulcus for the processing of voices. NeuroImage 22:948–955

    PubMed  Google Scholar 

  29. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312

    CAS  Google Scholar 

  30. Schall S, Kiebel SJ, Maess B, von Kriegstein K (2015) Voice identity recognition: functional division of the right STS and its behavioral relevance. J Cogn Neurosci 27:280–291

    PubMed  Google Scholar 

  31. Ocklenburg S, Friedrich P, Güntürkün O, Genç E (2016) Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett 633:210–214

    CAS  PubMed  Google Scholar 

  32. Specht K, Wigglesworth P (2018) The functional and structural asymmetries of the superior temporal sulcus. Scand J Psychol 59:74–82

    PubMed  Google Scholar 

  33. Leroy F, Cai Q, Bogart SL, Dubois J, Coulon O, Monzalvo K, Fischer C, Glasel H et al (2015) New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc Natl Acad Sci U S A 112:1208–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Frankland SM, Greene JD (2015) An architecture for encoding sentence meaning in left mid-superior temporal cortex. Proc Natl Acad Sci U S A 112:11732–11737

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans S (2017) What has replication ever done for us? Insights from neuroimaging of speech perception. Front Hum Neurosci 11:41

    PubMed  PubMed Central  Google Scholar 

  36. Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46

    PubMed  Google Scholar 

  37. Shapleske J, Rossell SL, Woodruff PWR, David AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Rev 29:26–49

    CAS  PubMed  Google Scholar 

  38. Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57:349–358

    CAS  PubMed  Google Scholar 

  39. Galuske RAW, Schlote W, Bratzke H, Singer W (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science (New York, NY) 289:1946–1949

    CAS  Google Scholar 

  40. Hutsler JJ (2003) The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain Lang 86:226–242

    PubMed  Google Scholar 

  41. Seldon HL (1981) Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions. Brain Res 229:277–294

    CAS  PubMed  Google Scholar 

  42. Seldon HL (1981) Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310

    CAS  PubMed  Google Scholar 

  43. Chance SA (2014) The cortical microstructural basis of lateralized cognition: a review. Front Psychol 5:820

    PubMed  PubMed Central  Google Scholar 

  44. Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8:389–395

    CAS  PubMed  Google Scholar 

  45. Hutsler J, Galuske RAW (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26:429–435

    CAS  Google Scholar 

  46. Sandmann P, Eichele T, Specht K, Jäncke L, Rimol LM, Nordby H, Hugdahl K (2007) Hemispheric asymmetries in the processing of temporal acoustic cues in consonant-vowel syllables. Restor Neurol Neurosci 25:227–240

    PubMed  Google Scholar 

  47. Ocklenburg S, Friedrich P, Fraenz C, Schlüter C, Beste C, Güntürkün O, Genç E (2018) Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Sci Adv 4:eaar6830

    PubMed  PubMed Central  Google Scholar 

  48. Westerhausen R, Kompus K, Hugdahl K (2014) Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect. NeuroImage 84:962–970

    PubMed  Google Scholar 

  49. Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage 62:816–847

    PubMed  PubMed Central  Google Scholar 

  50. Hickok G, Poeppel D (2016) Neural basis of speech perception. In: InHickok G, Small SL (eds) Neurobiology of language. Elsevier/AP, Amsterdam, pp. 299–310

    Google Scholar 

  51. Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N (1985) Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 18:222–233

    CAS  PubMed  Google Scholar 

  52. Elnakib A, Soliman A, Nitzken M, Casanova MF, Gimel'farb G, El-Baz A (2014) Magnetic resonance imaging findings for dyslexia: a review. J Biomed Nanotechnol 10:2778–2805

    CAS  PubMed  Google Scholar 

  53. Knecht S (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518

    PubMed  Google Scholar 

  54. Somers M, Aukes MF, Ophoff RA, Boks MP, Fleer W, de Visser KCL, Kahn RS, Sommer IE (2015) On the relationship between degree of hand-preference and degree of language lateralization. Brain Lang 144:10–15

    PubMed  Google Scholar 

  55. Mazoyer B, Zago L, Jobard G, Crivello F, Joliot M, Perchey G, Mellet E, Petit L et al (2014) Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One 9:e101165

    PubMed  PubMed Central  Google Scholar 

  56. Annett M (1998) Handedness and cerebral dominance: the right shift theory. J Neuropsychiatr Clin Neurosci 10:459–469

    CAS  Google Scholar 

  57. McManus IC (1985) Handedness, language dominance and aphasia: a genetic model. Psychol Med Monogr Suppl 8:3–40

    Google Scholar 

  58. Corballis MC (2009) The evolution and genetics of cerebral asymmetry. Philos Trans R Soc Lond B Biol Sci 364:867–879

    CAS  PubMed  Google Scholar 

  59. Reiss M, Reiss G (1999) Earedness and handedness: distribution in a German sample with some family data. Cortex 35:403–412

    CAS  PubMed  Google Scholar 

  60. Ocklenburg S, Beste C, Güntürkün O (2013) Handedness: a neurogenetic shift of perspective. Neurosci Biobehav Rev 37:2788–2793

    PubMed  Google Scholar 

  61. Ocklenburg S, Beste C, Arning L, Peterburs J, Güntürkün O (2014) The ontogenesis of language lateralization and its relation to handedness. Neurosci Biobehav Rev 43:191–198

    PubMed  Google Scholar 

  62. Schmitz J, Metz GAS, Güntürkün O, Ocklenburg S (2017) Beyond the genome-towards an epigenetic understanding of handedness ontogenesis. Prog Neurobiol 159:69–89

    PubMed  Google Scholar 

  63. Guadalupe T, Willems RM, Zwiers MP, Arias Vasquez A, Hoogman M, Hagoort P, Fernandez G, Buitelaar J et al (2014) Differences in cerebral cortical anatomy of left- and right-handers. Front Psychol 5:261

    PubMed  PubMed Central  Google Scholar 

  64. Kong X-Z, Mathias SR, Guadalupe T, Glahn DC, Franke B, Crivello F, Tzourio-Mazoyer N, Fisher SE et al (2018) Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA consortium. Proc Natl Acad Sci 115:E5154–E5163

    CAS  Google Scholar 

  65. Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 14:685–700

    CAS  PubMed  Google Scholar 

  66. Kennedy DN, O'Craven KM, Ticho BS, Goldstein AM, Makris N, Henson JW (1999) Structural and functional brain asymmetries in human situs inversus totalis. Neurology 53:1260–1265

    CAS  PubMed  Google Scholar 

  67. Tanaka S (1999) Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry. Neuropsychologia 37:869–874

    CAS  PubMed  Google Scholar 

  68. Vingerhoets G, Li X, Hou L, Bogaert S, Verhelst H, Gerrits R, Siugzdaite R, Roberts N (2018) Brain structural and functional asymmetry in human situs inversus totalis. Brain Struct Funct 223:1937–1952

    PubMed  Google Scholar 

  69. Enard W (2011) FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol 21:415–424

    CAS  PubMed  Google Scholar 

  70. Vernes SC, Spiteri E, Nicod J, Groszer M, Taylor JM, Davies KE, Geschwind DH, Fisher SE (2007) High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. Am J Hum Genet 81:1232–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168

    Google Scholar 

  72. Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science (New York, NY) 302:1181–1185

    CAS  Google Scholar 

  73. Koechlin E, Summerfield C (2007) An information theoretical approach to prefrontal executive function. Trends Cogn Sci 11:229–235

    Google Scholar 

  74. Dippel G, Beste C (2015) A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat Commun 6:6587 EP

    Google Scholar 

  75. Petrides M (1996) Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1455–1461 discussion 1461-2

    CAS  PubMed  Google Scholar 

  76. Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179

    PubMed  Google Scholar 

  77. Tschentscher N, Mitchell D, Duncan J (2017) Fluid intelligence predicts novel rule implementation in a distributed frontoparietal control network. J Neurosci 37:4841–4847

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mückschel M, Stock A-K, Beste C (2014) Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex (New York, NY : 1991) 24:2120–2129

    Google Scholar 

Download references

Acknowledgments

The authors thank Katharina Berger for her support during the behavioral measurements. Further, the authors thank PHILIPS Germany (Burkhard Mädler) for the scientific support with the MRI measurements as well as Tobias Otto for the technical assistance.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grant number OC 127/9-1, GU 227/16-1, GE 2777/2-1, SFB 940 project B08, and SFB 1280 project A03 and the Mercur Foundation grant number An-2015-0044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesa Berretz.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berretz, G., Arning, L., Gerding, W.M. et al. Structural Asymmetry in the Frontal and Temporal Lobes Is Associated with PCSK6 VNTR Polymorphism. Mol Neurobiol 56, 7765–7773 (2019). https://doi.org/10.1007/s12035-019-01646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01646-1

Keywords

Navigation