Skip to main content
Log in

Role of HPA and the HPG Axis Interaction in Testosterone-Mediated Learned Helpless Behavior

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Affective disorders show sex-specific differences in prevalence, symptoms, and complications. One hypothesis for this discrepancy is the interaction between the hypothalamic-pituitary-adrenal (HPA) axis and hypothalamic-pituitary-gonadal (HPG) axis. The present study investigates the influence of androgen on the behavioral phenotype and explores how it interacts with HPA axis genes. Gonadectomized (GDX) and GDX rats treated with testosterone propionate (T) were tested for learned helplessness (LH) behavior and compared with tested controls (TC). Prefrontal cortex was used for analyses of HPG- axis-related genes (androgen receptor, (Ar); estrogen receptor-β (Er-β)) and HPA axis-related genes (corticotropin-releasing hormone, (Crh); glucocorticoid receptor, (Nr3c1); corticotropin-releasing hormone receptor 1, (Crhr1); corticotropin-releasing hormone receptor 2, (Crhr2); FK506 binding protein 5, (Fkbp5)). Promoter-specific CpG methylation in the Crh gene was determined by bisulfite sequencing. Chromatin immunoprecipitation (ChIP) assay was used for determining ER-β binding on the proximal promoter region of Crh gene. Serum testosterone levels confirmed a testosterone-depleted GDX group, a group with supraphysiological levels of testosterone (T) and another group with physiological levels of testosterone (control (C)). Unlike GDX rats, T group exhibited significantly higher LH score when compared with any other group. Crh and Fkbp5 genes were significantly upregulated in GDX group compared with controls, whereas Er-β showed a significant downregulation in the same group. Methylation analysis showed no significant differences in-between groups. ChIP assay was unable to determine a significant change in ER-β binding but revealed a notable contrast in Crh promoter occupancy between T and GDX groups. Altogether, the present study reveals an increased susceptibility to depression-like behavior due to chronic supraphysiological level of androgen via HPA axis inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HPA:

Hypothalamic-pituitary-adrenal axis

HPG:

Hypothalamic-pituitary-gonadal axis

GDX:

Gonadectomized

T:

Testosterone propionate

LH:

Learned helplessness

TC:

Tested controls

Ar:

Androgen receptor

ER-β:

Estrogen receptor-β

Crh:

Corticotropin-releasing hormone

Nr3c1:

Glucocorticoid receptor

Crhr:

Corticotropin-releasing hormone receptor

Fkbp5:

FK506 binding protein 5

ChIP:

Chromatin immunoprecipitation

PFC:

Prefrontal cortex

PND:

Postnatal day

ELISA:

Enzyme-linked immunosorbent assay

ET:

Escape test

IS:

Inescapable shock

DTT:

Dithiothreitol

qPCR:

Quantitative polymerase chain reaction

Gapdh:

Glyceraldehyde 3-phosphate dehydrogenase

cDNA:

Complementary DNA

PBS:

Phosphate buffered saline

PI:

Proteasomal inhibitors

RPM:

Revolution per minute

TE:

Tris-ethylenediaminetetraacetic acid

LiCl:

Lithium chloride

FST:

Forced swim test

AAS:

Anabolic androgenic steroid

3-β-diol:

5-Alpha-androstane 3beta,17beta diol

ERE:

Estrogen receptor elements

cAMP:

cAMP-response elements

AP-1:

Activator protein-1

PVN:

Periventricular nucleus

References

  1. Cohen-Woods S, Craig IW, McGuffin P (2013) The current state of play on the molecular genetics of depression. Psychol Med 43(4):673–687. https://doi.org/10.1017/S0033291712001286

    Article  CAS  PubMed  Google Scholar 

  2. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902. https://doi.org/10.1038/nature07455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murgatroyd C, Spengler D (2011) Epigenetic programming of the HPA axis: early life decides. Stress 14(6):581–589. https://doi.org/10.3109/10253890.2011.602146

    Article  CAS  PubMed  Google Scholar 

  4. Handa RJ, Nunley KM, Lorens SA, Louie JP, McGivern RF, Bollnow MR (1994) Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and foot shock stressors. Physiol Behav 55(1):117–124

    Article  CAS  PubMed  Google Scholar 

  5. Handa RJ, Weiser MJ (2014) Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 35(2):197–220. https://doi.org/10.1016/j.yfrne.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  6. Faravelli C, Alessandra Scarpato M, Castellini G, Lo Sauro C (2013) Gender differences in depression and anxiety: the role of age. Psychiatry Res 210(3):1301–1303. https://doi.org/10.1016/j.psychres.2013.09.027

    Article  PubMed  Google Scholar 

  7. Arsenault-Lapierre G, Kim C, Turecki G (2004) Psychiatric diagnoses in 3275 suicides: a meta-analysis. BMC Psychiatry 4:37. https://doi.org/10.1186/1471-244X-4-37

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moller-Leimkuhler AM (2003) The gender gap in suicide and premature death or: why are men so vulnerable? Eur Arch Psychiatry Clin Neurosci 253(1):1–8. https://doi.org/10.1007/s00406-003-0397-6

    Article  PubMed  Google Scholar 

  9. Serafini G, Pompili M, Innamorati M, Rihmer Z, Sher L, Girardi P (2012) Can cannabis increase the suicide risk in psychosis? A critical review. Curr Pharm Des 18(32):5165–5187

    Article  CAS  PubMed  Google Scholar 

  10. Sher L, Grunebaum MF, Sullivan GM, Burke AK, Cooper TB, Mann JJ, Oquendo MA (2014) Association of testosterone levels and future suicide attempts in females with bipolar disorder. J Affect Disord 166:98–102. https://doi.org/10.1016/j.jad.2014.04.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sher L, Grunebaum MF, Sullivan GM, Burke AK, Cooper TB, Mann JJ, Oquendo MA (2012) Testosterone levels in suicide attempters with bipolar disorder. J Psychiatr Res 46(10):1267–1271. https://doi.org/10.1016/j.jpsychires.2012.06.016

    Article  PubMed  Google Scholar 

  12. Sher L (2017) Commentary: CSF and plasma testosterone in attempted suicide. Front Public Health 5:92. https://doi.org/10.3389/fpubh.2017.00092

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Jia CX, Wang LL (2015) Testosterone differs between suicide attempters and community controls in men and women of China. Physiol Behav 141:40–45. https://doi.org/10.1016/j.physbeh.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  14. Tripodianakis J, Markianos M, Rouvali O, Istikoglou C (2007) Gonadal axis hormones in psychiatric male patients after a suicide attempt. Eur Arch Psychiatry Clin Neurosci 257(3):135–139. https://doi.org/10.1007/s00406-006-0686-y

    Article  PubMed  Google Scholar 

  15. Perez-Rodriguez MM, Lopez-Castroman J, Martinez-Vigo M, Diaz-Sastre C, Ceverino A, Nunez-Beltran A, Saiz-Ruiz J, de Leon J et al (2011) Lack of association between testosterone and suicide attempts. Neuropsychobiology 63(2):125–130. https://doi.org/10.1159/000318085

    Article  CAS  PubMed  Google Scholar 

  16. Long N, Nguyen L, Stevermer J (2015) PURLS: It’s time to reconsider early-morning testosterone tests. J Fam Pract 64(7):418–419

    PubMed  PubMed Central  Google Scholar 

  17. Giegling I, Rujescu D, Mandelli L, Schneider B, Hartmann AM, Schnabel A, Maurer K, De Ronchi D et al (2008) Estrogen receptor gene 1 variants are not associated with suicidal behavior. Psychiatry Res 160(1):1–7. https://doi.org/10.1016/j.psychres.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  18. Ostlund H, Keller E, Hurd YL (2003) Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann N Y Acad Sci 1007:54–63

    Article  PubMed  Google Scholar 

  19. Graae L, Karlsson R, Paddock S (2012) Significant association of estrogen receptor binding site variation with bipolar disorder in females. PLoS One 7(2):e32304. https://doi.org/10.1371/journal.pone.0032304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walther A, Rice T, Kufert Y, Ehlert U (2016) Neuroendocrinology of a male-specific pattern for depression linked to alcohol use disorder and suicidal behavior. Front Psychol 7:206. https://doi.org/10.3389/fpsyt.2016.00206

    Article  Google Scholar 

  21. Williamson M, Viau V (2008) Selective contributions of the medial preoptic nucleus to testosterone-dependant regulation of the paraventricular nucleus of the hypothalamus and the HPA axis. Am J Physiol Regul Integr Comp Physiol 295(4):R1020–R1030. https://doi.org/10.1152/ajpregu.90389.2008

    Article  CAS  PubMed  Google Scholar 

  22. Bingaman EW, Magnuson DJ, Gray TS, Handa RJ (1994) Androgen inhibits the increases in hypothalamic corticotropin-releasing hormone (CRH) and CRH-immunoreactivity following gonadectomy. Neuroendocrinology 59(3):228–234

    Article  CAS  PubMed  Google Scholar 

  23. Goto Y, Yang CR, Otani S (2010) Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 67(3):199–207. https://doi.org/10.1016/j.biopsych.2009.08.026

    Article  PubMed  Google Scholar 

  24. McKlveen JM, Myers B, Flak JN, Bundzikova J, Solomon MB, Seroogy KB, Herman JP (2013) Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry 74(9):672–679. https://doi.org/10.1016/j.biopsych.2013.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marrocco J, McEwen BS (2016) Sex in the brain: hormones and sex differences. Dialogues Clin Neurosci 18(4):373–383

    PubMed  PubMed Central  Google Scholar 

  26. Cooper SE, Wood RI (2014) Androgens and opiates: testosterone interaction with morphine self-administration in male rats. Neuroreport 25(7):521–526. https://doi.org/10.1097/WNR.0000000000000125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik VI, Pandey GN, Davis JM, Dwivedi Y (2011) MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol 14(10):1315–1325. https://doi.org/10.1017/S1461145710001628

    Article  CAS  PubMed  Google Scholar 

  28. Timberlake MA 2nd, Dwivedi Y (2015) Altered expression of endoplasmic reticulum stress associated genes in hippocampus of learned helpless rats: relevance to depression pathophysiology. Front Pharmacol 6:319. https://doi.org/10.3389/fphar.2015.00319

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec; 25(4):402–8. https://doi.org/10.1006/meth.2001.1262

  30. Handa RJ, Kudwa AE, Donner NC, McGivern RF, Brown R (2013) Central 5-alpha reduction of testosterone is required for testosterone’s inhibition of the hypothalamo-pituitary-adrenal axis response to restraint stress in adult male rats. Brain Res 1529:74–82. https://doi.org/10.1016/j.brainres.2013.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toufexis DJ, Wilson ME (2012) Dihydrotestosterone differentially modulates the cortisol response of the hypothalamic-pituitary-adrenal axis in male and female rhesus macaques, and restores circadian secretion of cortisol in females. Brain Res 1429:43–51. https://doi.org/10.1016/j.brainres.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  32. Stephens MA, Mahon PB, McCaul ME, Wand GS (2016) Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: effects of biological sex and circulating sex hormones. Psychoneuroendocrinology 66:47–55. https://doi.org/10.1016/j.psyneuen.2015.12.021

    Article  CAS  PubMed  Google Scholar 

  33. Knight EL, Christian CB, Morales PJ, Harbaugh WT, Mayr U, Mehta PH (2017) Exogenous testosterone enhances cortisol and affective responses to social-evaluative stress in dominant men. Psychoneuroendocrinology 85:151–157. https://doi.org/10.1016/j.psyneuen.2017.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dalla C, Edgecomb C, Whetstone AS, Shors TJ (2008) Females do not express learned helplessness like males do. Neuropsychopharmacol 33(7):1559–1569. https://doi.org/10.1038/sj.npp.1301533

    Article  Google Scholar 

  35. Wainwright SR, Lieblich SE, Galea LA (2011) Hypogonadism predisposes males to the development of behavioural and neuroplastic depressive phenotypes. Psychoneuroendocrinology 36(9):1327–1341. https://doi.org/10.1016/j.psyneuen.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Frye CA, Edinger KL, Lephart ED, Walf AA (2010) 3alpha-androstanediol, but not testosterone, attenuates age-related decrements in cognitive, anxiety, and depressive behavior of male rats. Front Aging Neurosci 2:15. https://doi.org/10.3389/fnagi.2010.00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frye CA, Walf AA (2009) Depression-like behavior of aged male and female mice is ameliorated with administration of testosterone or its metabolites. Physiol Behav 97(2):266–269. https://doi.org/10.1016/j.physbeh.2009.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wainwright SR, Workman JL, Tehrani A, Hamson DK, Chow C, Lieblich SE, Galea LA (2016) Testosterone has antidepressant-like efficacy and facilitates imipramine-induced neuroplasticity in male rats exposed to chronic unpredictable stress. Horm Behav 79:58–69. https://doi.org/10.1016/j.yhbeh.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  39. Filova B, Malinova M, Babickova J, Tothova L, Ostatnikova D, Celec P, Hodosy J (2015) Effects of testosterone and estradiol on anxiety and depressive-like behavior via a non-genomic pathway. Neurosci Bull 31(3):288–296. https://doi.org/10.1007/s12264-014-1510-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pare WP (1994) Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav 55(3):433–439

    Article  CAS  PubMed  Google Scholar 

  41. Choi JC, Chung MI, Lee YD (2012) Modulation of pain sensation by stress-related testosterone and cortisol. Anaesthesia 67(10):1146–1151. https://doi.org/10.1111/j.1365-2044.2012.07267.x

    Article  CAS  PubMed  Google Scholar 

  42. Pednekar JR, Mulgaonker VK (1995) Role of testosterone on pain threshold in rats. Indian J Physiol Pharmacol 39(4):423–424

    CAS  PubMed  Google Scholar 

  43. Selakovic D, Joksimovic J, Obradovic D, Milovanovic D, Djuric M, Rosic G (2016) The adverse effects of exercise and supraphysiological dose of testosterone-enanthate (TE) on exploratory activity in elevated plus maze (EPM) test—indications for using total exploratory activity (TEA) as a new parameter for ex. Neuro Endocrinol Lett 37(5):383–388

    PubMed  Google Scholar 

  44. Joksimovic J, Selakovic D, Jakovljevic V, Mihailovic V, Katanic J, Boroja T, Rosic G (2017) Alterations of the oxidative status in rat hippocampus and prodepressant effect of chronic testosterone enanthate administration. Mol Cell Biochem 433:41–50. https://doi.org/10.1007/s11010-017-3014-0

    Article  CAS  PubMed  Google Scholar 

  45. Matrisciano F, Modafferi AM, Togna GI, Barone Y, Pinna G, Nicoletti F, Scaccianoce S (2010) Repeated anabolic androgenic steroid treatment causes antidepressant-reversible alterations of the hypothalamic-pituitary-adrenal axis, BDNF levels and behavior. Neuropharmacology 58(7):1078–1084. https://doi.org/10.1016/j.neuropharm.2010.01.015

    Article  CAS  PubMed  Google Scholar 

  46. Eklof AC, Thurelius AM, Garle M, Rane A, Sjoqvist F (2003) The anti-doping hot-line, a means to capture the abuse of doping agents in the Swedish society and a new service function in clinical pharmacology. Eur J Clin Pharmacol 59(8–9):571–577. https://doi.org/10.1007/s00228-003-0633-z

    Article  PubMed  Google Scholar 

  47. Perry PJ, Kutscher EC, Lund BC, Yates WR, Holman TL, Demers L (2003) Measures of aggression and mood changes in male weightlifters with and without androgenic anabolic steroid use. J Forensic Sci 48(3):646–651

    Article  PubMed  Google Scholar 

  48. Viau V, Lee P, Sampson J, Wu J (2003) A testicular influence on restraint-induced activation of medial parvocellular neurons in the paraventricular nucleus in the male rat. Endocrinology 144(7):3067–3075. https://doi.org/10.1210/en.2003-0064

    Article  CAS  PubMed  Google Scholar 

  49. Weiser MJ, Goel N, Sandau US, Bale TL, Handa RJ (2008) Androgen regulation of corticotropin-releasing hormone receptor 2 (CRHR2) mRNA expression and receptor binding in the rat brain. Exp Neurol 214(1):62–68. https://doi.org/10.1016/j.expneurol.2008.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ing NH (2005) Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs. Biol Reprod 72(6):1290–1296. https://doi.org/10.1095/biolreprod.105.040014

    Article  CAS  PubMed  Google Scholar 

  51. Yeap BB, Krueger RG, Leedman PJ (1999) Differential posttranscriptional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells. Endocrinology 140(7):3282–3291. https://doi.org/10.1210/endo.140.7.6769

    Article  CAS  PubMed  Google Scholar 

  52. Burnstein KL, Maiorino CA, Dai JL, Cameron DJ (1995) Androgen and glucocorticoid regulation of androgen receptor cDNA expression. Mol Cell Endocrinol 115(2):177–186

    Article  CAS  PubMed  Google Scholar 

  53. Handa RJ, Sharma D, Uht R (2011) A role for the androgen metabolite, 5alpha androstane 3beta, 17beta diol (3beta-diol) in the regulation of the hypothalamo-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2:65. https://doi.org/10.3389/fendo.2011.00065

    Article  Google Scholar 

  54. Handa RJ, Weiser MJ, Zuloaga DG (2009) A role for the androgen metabolite, 5alpha-androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity. J Neuroendocrinol 21(4):351–358. https://doi.org/10.1111/j.1365-2826.2009.01840.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lund TD, Munson DJ, Haldy ME, Handa RJ (2004) Dihydrotestosterone may inhibit hypothalamo-pituitary-adrenal activity by acting through estrogen receptor in the male mouse. Neurosci Lett 365(1):43–47. https://doi.org/10.1016/j.neulet.2004.04.035

    Article  CAS  PubMed  Google Scholar 

  56. Ni X, Nicholson RC (2006) Steroid hormone mediated regulation of corticotropin-releasing hormone gene expression. Frointiers in Bioscience: a Journal and Virtual Library 11:2909–2917

    Article  CAS  Google Scholar 

  57. Vamvakopoulos NC, Chrousos GP (1993) Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. J Clin Invest 92(4):1896–1902. https://doi.org/10.1172/JCI116782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller WJ, Suzuki S, Miller LK, Handa R, Uht RM (2004) Estrogen receptor (ER)beta isoforms rather than ERalpha regulate corticotropin-releasing hormone promoter activity through an alternate pathway. J Neurosci 24(47):10628–10635. https://doi.org/10.1523/JNEUROSCI.5540-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen XN, Zhu H, Meng QY, Zhou JN (2008) Estrogen receptor-alpha and -beta regulate the human corticotropin-releasing hormone gene through similar pathways. Brain Res 1223:1–10. https://doi.org/10.1016/j.brainres.2008.05.043

    Article  CAS  PubMed  Google Scholar 

  60. Hiroi R, Lacagnina AF, Hinds LR, Carbone DG, Uht RM, Handa RJ (2013) The androgen metabolite, 5alpha-androstane-3beta,17beta-diol (3beta-diol), activates the oxytocin promoter through an estrogen receptor-beta pathway. Endocrinology 154(5):1802–1812. https://doi.org/10.1210/en.2012-2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194. https://doi.org/10.1016/j.arr.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  62. Reddy DS, Jian K (2010) The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J Pharmacol Exp Ther 334(3):1031–1041. https://doi.org/10.1124/jpet.110.169854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by grants from the National Institute of Mental Health (R01MH082802, 1R01MH101890, R01MH100616, 1R01MH107183-01) to Dr. Dwivedi. The sponsoring agency had no role in study design, collection, analysis, interpretation of data, and in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Dwivedi.

Ethics declarations

Research Involving Animals

This research involves the use of animals. The study was approved by the Institutional Animal Care and Use Committee of the University of Alabama at Birmingham.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Fig. S1

A schematic overview representing the groupwise distribution of rats under the present study. A total of 30 Long Evans rats were randomly assigned to treatments (GDX = 10 rats having undergone gonadectomy, T = 10 rats having undergone gonadectomy and daily supraphysiological testosterone injections, C = 10 naive controls). For behavioral testing, all 30 rats were further randomly assigned to be restrained only (tested controls (TC)) or restrained and exposed to inescapable shocks (IS). (PNG 23 kb)

Fig. S2

Methylation of Crh gene promoter. a The sequence represents 420 bp upstream region of rat Crh promoter with CpG sites highlighted, indicating their position relative to transcription start site (right arrow). b The checker board represents methylation status of individual CpG site as identified from each animal considering individual groups, all methylated cytosine (C) not converted thymine (T) are presented with double-plus symbol. Whereas, identification of both C and T peaks is represented with plus symbol, this indicates potentially incomplete bisulfite conversion. (DOCX 24 kb)

Table S1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, B., Roy, B. & Dwivedi, Y. Role of HPA and the HPG Axis Interaction in Testosterone-Mediated Learned Helpless Behavior. Mol Neurobiol 56, 394–405 (2019). https://doi.org/10.1007/s12035-018-1085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1085-x

Keywords