Skip to main content

Advertisement

Log in

Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson’s disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (−) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson’s disease and other inflammation-associated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

PD:

Parkinson’s disease

LPS:

Lipo-polysaccharide

ROS:

Reactive oxygen species

Akt:

Protein kinase B

MPTP:

1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine

PTGS:

Prostaglandin endoperoxide synthase

LC3:

Light chain 3

ATG-5:

Autophagy protein-5

ATG-12:

Autophagy protein 12

ATG-14:

Autophagy protein-14

ATG-7:

Autophagy protein-7

p62/SQSTM1:

Sequestosome 1

IL-1:

Interleukin-1

Nrf2:

Nuclear factor erythroid 2

MCP-1:

Monocyte chemotactic protein-1

IL-4:

Interleukin-4

IL-8:

Interleukin-8

TGF-β:

Transforming growth factor beta

IL-13:

Interleukin-13

SCF:

Stem cell factor

AMPK:

Adenosine monophosphate-activated protein kinase

eNOS:

Endothelial nitric oxide synthase

PGE-2:

Prostaglandin-E2

References

  1. Na KS, Jung HY, Kim YK (2012) The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog NeuroPsychopharmacol Biol Psychiatry 48:277–286. https://doi.org/10.1016/j.pnpbp.2012.10.022

    Article  PubMed  CAS  Google Scholar 

  2. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47. https://doi.org/10.1186/1750-1326-4-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zhang K, Rothstein JD (2017) Neurodegenerative disease: Two-for-one on potential therapies. Nature 544:302–303. https://doi.org/10.1038/nature21911

    Article  PubMed  CAS  Google Scholar 

  4. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518. https://doi.org/10.1016/j.nbd.2009.11.004

    Article  PubMed  CAS  Google Scholar 

  5. Auriel E, Regev K, Korczyn AD (2014) Nonsteroidal anti-inflammatory drugs exposure and the central nervous system. Handb Clin Neurol 119:577–584. https://doi.org/10.1016/B978-0-7020-4086-3.00038-2

    Article  PubMed  Google Scholar 

  6. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson's disease: A target for neuroprotection? Lancet Neurol 8(4):382–397. https://doi.org/10.1016/S1474-4422(09)70062-6

    Article  PubMed  CAS  Google Scholar 

  7. Blandini F (2013) Neural and immune mechanisms in the pathogenesis of Parkinson's disease. J Neuroimmune Pharm 8(1):189–201. https://doi.org/10.1007/s11481-013-9435-y

    Article  Google Scholar 

  8. Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep 13(4):3391–3396. https://doi.org/10.3892/mmr.2016.4948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hunot S, Hirsch EC (2003) Neuroinflammatory processes in Parkinson's disease. Ann Neurol 53(Suppl 3):S49–S58; discussion S58-60. https://doi.org/10.1002/ana.10481

    Article  PubMed  CAS  Google Scholar 

  10. Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: Focus on astrocytes. Mol Neurobiol 49(1):28–38. https://doi.org/10.1007/s12035-013-8483-x

    Article  PubMed  CAS  Google Scholar 

  11. Niranjan R, Kamat PK, Nath C, Shukla R (2010) Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). J Ethnopharmacol 127(3):625–630. https://doi.org/10.1016/j.jep.2009.12.012

    Article  PubMed  CAS  Google Scholar 

  12. Niranjan R, Nath C, Shukla R (2010) The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radic Res 44(11):1304–1316. https://doi.org/10.3109/10715762.2010.501080

    Article  PubMed  CAS  Google Scholar 

  13. Pascucci RA (1999) COX-2-specific inhibition: Implications for clinical practice. J Am Osteopath Assoc 99(11 Suppl):S18–S22

    Article  CAS  PubMed  Google Scholar 

  14. Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63(9):901–910

    Article  PubMed  CAS  Google Scholar 

  15. Wu L, Wang Q, Liang X, Andreasson K (2007) Divergent effects of prostaglandin receptor signaling on neuronal survival. Neurosci Lett 421(3):253–258. https://doi.org/10.1016/j.neulet.2007.05.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gao JP, Sun S, Li WW, Zhao H, Cai DF (2008) COX plays a pivotal role in the progressive neuronal loss in neurodegenerative diseases. Sheng Li Ke Xue Jin Zhan 39(3):214–220

    PubMed  CAS  Google Scholar 

  17. Niranjan R, Rajasekar N, Nath C, Shukla R (2012) The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6. Chem Biol Interact 200(2–3):73–83. https://doi.org/10.1016/j.cbi.2012.08.008

    Article  PubMed  CAS  Google Scholar 

  18. Niranjan R, Nath C, Shukla R (2011) Guggulipid and nimesulide differentially regulated inflammatory genes mRNA expressions via inhibition of NF-kB and CHOP activation in LPS-stimulated rat astrocytoma cells, C6. Cell Mol Neurobiol 31(5):755–764. https://doi.org/10.1007/s10571-011-9684-3

    Article  PubMed  CAS  Google Scholar 

  19. Takemiya T, Matsumura K, Yamagata K (2007) Roles of prostaglandin synthesis in excitotoxic brain diseases. Neurochem Int 51(2–4):112–120. https://doi.org/10.1016/j.neuint.2007.05.009

    Article  PubMed  CAS  Google Scholar 

  20. Arroyo DS, Gaviglio EA, Peralta Ramos JM, Bussi C, Rodriguez-Galan MC, Iribarren P (2014) Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol 18(1):55–65. https://doi.org/10.1016/j.intimp.2013.11.001

    Article  PubMed  CAS  Google Scholar 

  21. Berliocchi L, Russo R, Maiaru M, Levato A, Bagetta G, Corasaniti MT (2011) Autophagy impairment in a mouse model of neuropathic pain. Mol Pain 7:83. https://doi.org/10.1186/1744-8069-7-83

    Article  PubMed  PubMed Central  Google Scholar 

  22. Adhami F, Schloemer A, Kuan CY (2007) The roles of autophagy in cerebral ischemia. Autophagy 3(1):42–44

    Article  PubMed  CAS  Google Scholar 

  23. Garcia-Arencibia M, Hochfeld WE, Toh PP, Rubinsztein DC (2010) Autophagy, a guardian against neurodegeneration. Semin Cell Dev Biol 21(7):691–698. https://doi.org/10.1016/j.semcdb.2010.02.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2(1):1–14

    PubMed  PubMed Central  Google Scholar 

  25. Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698. https://doi.org/10.1523/JNEUROSCI.0143-07.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hoffman WH, Shacka JJ, Andjelkovic AV (2012) Autophagy in the brains of young patients with poorly controlled T1DM and fatal diabetic ketoacidosis. Exp Mol Pathol 93(2):273–280. https://doi.org/10.1016/j.yexmp.2011.10.007

    Article  PubMed  CAS  Google Scholar 

  27. Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z, Ding J, Jia L et al (2013) Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61(4):504–512. https://doi.org/10.1002/glia.22451

    Article  PubMed  Google Scholar 

  28. Bao XH, Naomoto Y, Hao HF, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y et al (2010) Autophagy: Can it become a potential therapeutic target? Int J Mol Med 25(4):493–503

    PubMed  CAS  Google Scholar 

  29. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  PubMed  CAS  Google Scholar 

  30. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  PubMed  CAS  Google Scholar 

  31. Peng GS, Li G, Tzeng NS, Chen PS, Chuang DM, Hsu YD, Yang S, Hong JS (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: Role of microglia. Brain Res Mol Brain Res 134(1):162–169. https://doi.org/10.1016/j.molbrainres.2004.10.021

    Article  PubMed  CAS  Google Scholar 

  32. Liu J, Shen HM, Ong CN (2001) Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sci 69(16):1833–1850

    Article  PubMed  CAS  Google Scholar 

  33. Niranjan R, Nagarajan R, Hanif K, Nath C, Shukla R (2014) LPS induces mediators of neuroinflammation, cell proliferation, and GFAP expression in human astrocytoma cells U373MG: The anti-inflammatory and anti-proliferative effect of guggulipid. Neurol Sci 35(3):409–414. https://doi.org/10.1007/s10072-013-1530-6

    Article  PubMed  Google Scholar 

  34. Badreddine S, Al-Dhaheri F, Al-Dabbagh A, Al-Amoudi A, Al-Ammari M, Elatassi N, Abbas H, Magliah R et al (2017) Dengue fever. Clinical features of 567 consecutive patients admitted to a tertiary care center in Saudi Arabia. Saudi Med J 38(10):1025–1033. https://doi.org/10.15537/smj.2017.10.20965

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bartels AL, Leenders KL (2010) Cyclooxygenase and neuroinflammation in Parkinson's disease neurodegeneration. Curr Neuropharmacol 8(1):62–68. https://doi.org/10.2174/157015910790909485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Moors T, Paciotti S, Chiasserini D, Calabresi P, Parnetti L, Beccari T, van de Berg WD (2016) Lysosomal dysfunction and alpha-Synuclein aggregation in Parkinson's disease: Diagnostic links. Mov Disord 31(6):791–801. https://doi.org/10.1002/mds.26562

    Article  PubMed  CAS  Google Scholar 

  37. Damodaran TV, Greenfield ST, Patel AG, Dressman HK, Lin SK, Abou-Donia MB (2006) Toxicogenomic studies of the rat brain at an early time point following acute sarin exposure. Neurochem Res 31(3):367–381. https://doi.org/10.1007/s11064-005-9023-5

    Article  PubMed  CAS  Google Scholar 

  38. Cai Z, Yan LJ (2013) Rapamycin, autophagy, and Alzheimer's disease. J Biochem Pharmacol Res 1(2):84–90

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Meng Y, Yong Y, Yang G, Ding H, Fan Z, Tang Y, Luo J, Ke ZJ (2013) Autophagy alleviates neurodegeneration caused by mild impairment of oxidative metabolism. J Neurochem 126(6):805–818. https://doi.org/10.1111/jnc.12268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cuervo AM (2006) Autophagy in neurons: It is not all about food. Trends Mol Med 12(10):461–464. https://doi.org/10.1016/j.molmed.2006.08.003

    Article  PubMed  CAS  Google Scholar 

  41. Niranjan R (2013) Molecular basis of etiological implications in Alzheimer's disease: Focus on neuroinflammation. Mol Neurobiol 48(3):412–428. https://doi.org/10.1007/s12035-013-8428-4

    Article  PubMed  CAS  Google Scholar 

  42. Chen Z, Fu Q, Shen B, Huang X, Wang K, He P, Li F, Zhang F et al (2014) Enhanced p62 expression triggers concomitant autophagy and apoptosis in a rat chronic spinal cord compression model. Mol Med Rep 9(6):2091–2096. https://doi.org/10.3892/mmr.2014.2124

    Article  PubMed  CAS  Google Scholar 

  43. Zheng HF, Yang YP, Hu LF, Wang MX, Wang F, Cao LD, Li D, Mao CJ et al (2013) Autophagic impairment contributes to systemic inflammation-induced dopaminergic neuron loss in the midbrain. PLoS One 8(8):e70472. https://doi.org/10.1371/journal.pone.0070472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Francois A, Rioux Bilan A, Quellard N, Fernandez B, Janet T, Chassaing D, Paccalin M, Terro F et al (2014) Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J Neuroinflammation 11:139. https://doi.org/10.1186/s12974-014-0139-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Glick D, Barth S, Macleod KF (2010) Autophagy: Cellular and molecular mechanisms. J Pathol 221(1):3–12. https://doi.org/10.1002/path.2697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yang DS, Kumar A, Stavrides P, Peterson J, Peterhoff CM, Pawlik M, Levy E, Cataldo AM et al (2008) Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. Am J Pathol 173(3):665–681. https://doi.org/10.2353/ajpath.2008.071176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kirilyuk A, Shimoji M, Catania J, Sahu G, Pattabiraman N, Giordano A, Albanese C, Mocchetti I et al (2012) An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One 7(11):e48243. https://doi.org/10.1371/journal.pone.0048243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Davenport CM, Sevastou IG, Hooper C, Pocock JM (2010) Inhibiting p53 pathways in microglia attenuates microglial-evoked neurotoxicity following exposure to Alzheimer peptides. J Neurochem 112(2):552–563. https://doi.org/10.1111/j.1471-4159.2009.06485.x

    Article  PubMed  CAS  Google Scholar 

  49. Parlato R, Liss B (2014) How Parkinson's disease meets nucleolar stress. Biochim Biophys Acta 1842(6):791–797. https://doi.org/10.1016/j.bbadis.2013.12.014

    Article  PubMed  CAS  Google Scholar 

  50. Nair VD, McNaught KS, Gonzalez-Maeso J, Sealfon SC, Olanow CW (2006) p53 mediates nontranscriptional cell death in dopaminergic cells in response to proteasome inhibition. J Biol Chem 281(51):39550–39560. https://doi.org/10.1074/jbc.M603950200

    Article  PubMed  CAS  Google Scholar 

  51. Du Y, Yang D, Li L, Luo G, Li T, Fan X, Wang Q, Zhang X et al (2009) An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 5(5):663–675

    Article  PubMed  CAS  Google Scholar 

  52. Nair VD (2006) Activation of p53 signaling initiates apoptotic death in a cellular model of Parkinson's disease. Apoptosis 11(6):955–966. https://doi.org/10.1007/s10495-006-6316-3

    Article  PubMed  CAS  Google Scholar 

  53. Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414(1):94–97. https://doi.org/10.1016/j.neulet.2006.12.003

    Article  PubMed  CAS  Google Scholar 

  54. Niranjan R, Nath C, Shukla R (2012) Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 46(9):1167–1177. https://doi.org/10.3109/10715762.2012.697626

    Article  PubMed  CAS  Google Scholar 

  55. Sil S, Ghosh T (2016) Role of cox-2 mediated neuroinflammation on the neurodegeneration and cognitive impairments in colchicine induced rat model of Alzheimer's disease. J Neuroimmunol 291:115–124. https://doi.org/10.1016/j.jneuroim.2015.12.003

    Article  PubMed  CAS  Google Scholar 

  56. Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA, Yue Z, Cookson MR, Klein C, Vila M et al (2013) Lysosomal impairment in Parkinson's disease. Mov Disord 28(6):725–732. https://doi.org/10.1002/mds.25462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gomez-Suaga P, Fdez E, Fernandez B, Martinez-Salvador M, Blanca Ramirez M, Madero-Perez J, Rivero-Rios P, Fuentes JM et al (2014) Novel insights into the neurobiology underlying LRRK2-linked Parkinson's disease. Neuropharmacology 85:45–56. https://doi.org/10.1016/j.neuropharm.2014.05.020

    Article  PubMed  CAS  Google Scholar 

  58. Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019

    Article  PubMed  CAS  Google Scholar 

  59. Niranjan R, Thakur AK (2017) The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Front Immunol 8:763. https://doi.org/10.3389/fimmu.2017.00763

    Article  PubMed  PubMed Central  Google Scholar 

  60. Burke RE, O'Malley K (2013) Axon degeneration in Parkinson's disease. Exp Neurol 246:72–83. https://doi.org/10.1016/j.expneurol.2012.01.011

    Article  PubMed  CAS  Google Scholar 

  61. Maiese K (2015) Targeting molecules to medicine with mTOR, autophagy, and neurodegenerative disorders. Br J Clin Pharmacol 82:1245–1266. https://doi.org/10.1111/bcp.12804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dagda RK, Zhu J, Chu CT (2009) Mitochondrial kinases in Parkinson's disease: Converging insights from neurotoxin and genetic models. Mitochondrion 9(5):289–298. https://doi.org/10.1016/j.mito.2009.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mizuno Y, Hattori N, Kondo T, Nomoto M, Origasa H, Takahashi R, Yamamoto M, Yanagisawa N (2017) A randomized double-blind placebo-controlled phase III trial of Selegiline monotherapy for early Parkinson disease. Clin Neuropharmacol 40(5):201–207. https://doi.org/10.1097/WNF.0000000000000239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shewchuk BM (2014) Prostaglandins and n-3 polyunsaturated fatty acids in the regulation of the hypothalamic-pituitary axis. Prostaglandins Leukot Essent Fat Acids 91(6):277–287. https://doi.org/10.1016/j.plefa.2014.09.005

    Article  CAS  Google Scholar 

  65. Vitale P, Panella A, Scilimati A, Perrone MG (2016) COX-1 inhibitors: Beyond structure toward therapy. Med Res Rev 36(4):641–671. https://doi.org/10.1002/med.21389

    Article  PubMed  CAS  Google Scholar 

  66. Andreasson K (2010) Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 91(3–4):104–112. https://doi.org/10.1016/j.prostaglandins.2009.04.003

    Article  PubMed  CAS  Google Scholar 

  67. Gu B, Desjardins P, Butterworth RF (2008) Selective increase of neuronal cyclooxygenase-2 (COX-2) expression in vulnerable brain regions of rats with experimental Wernicke's encephalopathy: Effect of nimesulide. Metab Brain Dis 23(2):175–187. https://doi.org/10.1007/s11011-008-9089-2

    Article  PubMed  CAS  Google Scholar 

  68. Almer G, Kikuchi H, Teismann P, Przedborski S (2006) Is prostaglandin E(2) a pathogenic factor in amyotrophic lateral sclerosis? Ann Neurol 59(6):980–983. https://doi.org/10.1002/ana.20847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Senior Research Associateship (pool scientist) from council of scientific and industrial research (CSIR) Pool No. 8696A (IIT kanpur project No. CSIR/BSBE/2013399) to Dr. Rituraj Niranjan is gratefully acknowledged. The valuable suggestions provided by Dr. Purushothaman Jambulingam at Vector Control Research Center are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituraj Niranjan.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Place of Work

The entire work included in this manuscript was done at the department of Biological Sciences and Bio-engineering, Indian Institute of Technology, Kanpur, U.P. India. Some writing and analysis part of work was accomplished by Dr. Rituraj Niranjan at the ICMR-Vector Control Research Center, Puducherry, 605006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niranjan, R., Mishra, K.P. & Thakur, A.K. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson’s Disease. Mol Neurobiol 55, 8038–8050 (2018). https://doi.org/10.1007/s12035-018-0950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0950-y

Keywords

Navigation