Skip to main content
Log in

S-Adenosylmethionine Promotes Oxidative Stress and Decreases Na+, K+-ATPase Activity in Cerebral Cortex Supernatants of Adolescent Rats: Implications for the Pathogenesis of S-Adenosylhomocysteine Hydrolase Deficiency

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency, who are clinically characterized by cerebral symptoms whose pathogenesis is still unknown. In the present work, we investigated the effects of AdoMet on redox homeostasis and on the activity of Na+, K+-ATPase in the cerebral cortex of young rats. AdoMet caused lipid peroxidation (increase of malondialdehyde concentrations) and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content). AdoMet also reduced the antioxidant defenses (reduced glutathione, GSH) and Na+, K+-ATPase activity. Furthermore, AdoMet-induced lipid peroxidation was fully prevented by the antioxidants trolox, melatonin, and resveratrol, and the decrease of GSH concentrations was abolished by trolox, suggesting the involvement of reactive oxygen species in these effects. In this context, AdoMet induced reactive oxygen (increase of 2′,7′-dichloroflurescein-DCFH oxidation) but not nitrogen (nitrate and nitrite levels) species generation. Finally, the decrease of Na+, K+-ATPase activity provoked by AdoMet was totally prevented by trolox, implying a possible oxidation of cysteine groups of the enzyme that are critical for its function and highly susceptible to oxidative attack. It is also noted that adenosine and methionine did not alter the parameters evaluated, suggesting selective effects of AdoMet. Our data strongly indicate that disturbance of redox homeostasis caused by a major metabolite (AdoMet) accumulating in S-adenosylhomocysteine hydrolase deficiency may represent a deleterious mechanism of brain damage in this disease. Finally, reduction of Na+, K+-ATPase activity provoked by AdoMet may lead to impaired neurotransmission, but disturbance of this system should be better clarified in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barić I, Ćuk M, Fumić K et al (2005) S-Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J Inherit Metab Dis 28:885–902. https://doi.org/10.1007/s10545-005-0192-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barić I, Fumic K, Glenn B, Cuk M, Schulze A, Finkelstein JD, James SJ, Mejaski-Bosnjak V et al (2004) S-Adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci U S A 101(12):4234–4239. https://doi.org/10.1073/pnas.0400658101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Barić I, Staufner C, Augoustides-Savvopoulou P, Chien YH, Dobbelaere D, Grünert SC, Opladen T, Petković Ramadža D et al (2017) Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders. J Inherit Metab Dis 40(1):5–20. https://doi.org/10.1007/s10545-016-9972-7

    Article  PubMed  CAS  Google Scholar 

  4. Finkelstein JD, Kyle W, Harris BJ (1971) Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys 146:84–92. https://doi.org/10.1016/S0003-9861(71)80044-9

    Article  PubMed  CAS  Google Scholar 

  5. Gaull GE, von Berg W, Raiha NC, Sturman JA (1973) Development of methyltransferase activities of human fetal tissues. Pediatr Res 7:527–533. https://doi.org/10.1203/00006450-197305000-00006

    Article  PubMed  CAS  Google Scholar 

  6. Grubbs R, Vugrek O, Deisch J et al (2010) S-Adenosylhomocysteine hydrolase deficiency: two siblings with fetal hydrops and fatal outcomes. J Inherit Metab Dis 33:705–713. https://doi.org/10.1007/s10545-010-9171-x

    Article  PubMed  CAS  Google Scholar 

  7. Honzík T, Magner M, Krijt J et al (2012) Clinical picture of S-adenosylhomocysteine hydrolase deficiency resembles phosphomannomutase 2 deficiency. Mol Genet Metab 107:611–613. https://doi.org/10.1016/j.ymgme.2012.08.014

    Article  PubMed  CAS  Google Scholar 

  8. Mudd SH, Brosnan JT, Brosnan ME, Jacobs RL, Stabler SP, Allen RH, Vance DE, Wagner C (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85:19–25

    Article  PubMed  CAS  Google Scholar 

  9. Stender S, Chakrabarti RS, Xing C, Gotway G, Cohen JC, Hobbs HH (2015) Adult-onset liver disease and hepatocellular carcinoma in S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 116:269–274. https://doi.org/10.1016/j.ymgme.2015.10.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Strauss KA, Ferreira C, Bottiglieri T, Zhao X, Arning E, Zhang S, Zeisel SH, Escolar ML et al (2015) Liver transplantation for treatment of severe S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 116(1–2):44–52. https://doi.org/10.1016/j.ymgme.2015.06.005

    Article  PubMed  CAS  Google Scholar 

  11. Rubin RA, Ordonez LA, Wurtman RJ (1974) Physiological dependence of brain methionine and S-adenosylmethionine concentrations on serum amino acid pattern. J Neurochem 23:227–231. https://doi.org/10.1111/j.1471-4159.1974.tb06938.x

    Article  PubMed  CAS  Google Scholar 

  12. Molloy AM, Orsi B, Kennedy DG, Kennedy S, Weir DG, Scott JM (1992) The relationship between the activity of methionine synthase and the ratio of S-adenosylmethionine to S-adenosylhomocysteine in the brain and other tissues of the pig. Biochem Pharmacol 44:1349–1355. https://doi.org/10.1016/0006-2952(92)90536-R

    Article  PubMed  CAS  Google Scholar 

  13. Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press Inc., Oxford, pp. 187–340

    Google Scholar 

  14. de Lores Arnaiz GR, López Ordieres MG (2014) Brain Na+, K+-ATPase activity in aging and disease. Int J Biomed Sci 10:85–102

    PubMed  PubMed Central  Google Scholar 

  15. Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion—prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7(6):752–758. https://doi.org/10.1038/jcbfm.1987.130

    Article  PubMed  CAS  Google Scholar 

  16. Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31(1):44–54. https://doi.org/10.1007/s10545-007-0798-1

    Article  PubMed  CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  18. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388(2):261–266. https://doi.org/10.1006/abbi.2001.2292

    Article  PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  20. Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356(3):276–287. https://doi.org/10.1016/0005-2736(74)90268-5

    Article  PubMed  CAS  Google Scholar 

  21. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-H

    Article  PubMed  CAS  Google Scholar 

  22. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363. https://doi.org/10.1016/S0076-6879(94)33041-7

    Article  PubMed  CAS  Google Scholar 

  23. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145. https://doi.org/10.1016/S0304-3940(01)01636-6

    Article  PubMed  CAS  Google Scholar 

  24. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

    Article  PubMed  CAS  Google Scholar 

  25. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231. https://doi.org/10.1021/tx00026a012

    Article  PubMed  CAS  Google Scholar 

  26. Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent microassay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202(2):133–411. https://doi.org/10.1016/S0022-1759(96)00244-X

    Article  PubMed  CAS  Google Scholar 

  27. Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681

    PubMed  CAS  Google Scholar 

  28. Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+,K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. Biochem J 220(1):301–307. https://doi.org/10.1042/bj2200301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157(2):375–380. https://doi.org/10.1016/0003-2697(86)90640-8

    Article  PubMed  CAS  Google Scholar 

  30. Martins NM, Santos NA, Curti C, Bianchi ML, Santos AC (2008) Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol 28:337–344. https://doi.org/10.1002/jat.1284

    Article  PubMed  CAS  Google Scholar 

  31. Praet M, Laghmiche M, Pollakis G, Goormaghtigh E, Ruysschaert JM (1986) In vivo and in vitro modifications of the mitochondrial membrane induced by 4′ epi-adriamycin. Biochem Pharmacol 35:2923–2928. https://doi.org/10.1016/0006-2952(86)90487-9

    Article  PubMed  CAS  Google Scholar 

  32. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357. https://doi.org/10.1016/S0076-6879(94)33040-9

    Article  PubMed  CAS  Google Scholar 

  33. Requejo R, Chouchani ET, Hurd TR, Menger KE, Hampton MB, Murphy MP (2010) Measuring mitochondrial protein thiol redox state. Methods Enzymol 474:123–147. https://doi.org/10.1016/S0076-6879(10)74008-8

    Article  PubMed  CAS  Google Scholar 

  34. Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639. https://doi.org/10.1016/S0006-3495(99)77415-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10(2):93–100. https://doi.org/10.1016/0891-5849(91)90002-K

    Article  PubMed  CAS  Google Scholar 

  36. Lores Arnaiz S, Llesuy S (1993) Oxidative stress in mouse heart by antitumoral drugs: a comparative study of doxorubicin and mitoxantrone. Toxicology 77(1–2):31–38. https://doi.org/10.1016/0300-483X(93)90135-F

    Article  PubMed  CAS  Google Scholar 

  37. Llesuy S, Evelson P, González-Flecha B, Peralta J, Carreras MC, Poderoso JJ, Boveris A (1994) Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med 16(4):445–451. https://doi.org/10.1016/0891-5849(94)90121-X

    Article  PubMed  CAS  Google Scholar 

  38. Dresch MT, Rossato SB, Kappel VD, Biegelmeyer R, Hoff ML, Mayorga P, Zuanazzi JA, Henriques AT et al (2009) Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal Biochem 385(1):107–114. https://doi.org/10.1016/j.ab.2008.10.036

    Article  PubMed  CAS  Google Scholar 

  39. Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 25(7):971–975. https://doi.org/10.1023/A:1007504525301

    Article  CAS  Google Scholar 

  40. Yu SP (2003) Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66(8):1601–1609. https://doi.org/10.1016/S0006-2952(03)00531-8

    Article  PubMed  CAS  Google Scholar 

  41. Hattori N, Kitagawa K, Higashida T, Yagyu K, Shimohama S, Wataya T, Perry G, Smith MA et al (1998) CI-ATPase and Na+, K+-ATPase activities in Alzheimer’s disease brains. Neurosci Lett 254(3):141–144. https://doi.org/10.1016/S0304-3940(98)00654-5

    Article  PubMed  CAS  Google Scholar 

  42. Anisimov VN (2006) Premature ageing prevention: limitations and perspectives of pharmacological interventions. Curr Drug Targets 7(11):1485–1503. https://doi.org/10.2174/1389450110607011485

    Article  PubMed  CAS  Google Scholar 

  43. Xia N, Daiber A, Förstermann U, Li H (2017) Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 174(12):1633–1646. https://doi.org/10.1111/bph.13492

    Article  PubMed  CAS  Google Scholar 

  44. Leonard SS, Xia C, Jiang BH, Stinefelt B, Klandorf H, Harris GK, Shi X (2003) Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 309(4):1017–1026. https://doi.org/10.1016/j.bbrc.2003.08.105

    Article  PubMed  CAS  Google Scholar 

  45. Dalle-Done I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38. https://doi.org/10.1016/S0009-8981(03)00003-2

    Article  CAS  Google Scholar 

  46. Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305(3):761–770. https://doi.org/10.1016/S0006-291X(03)00817-9

    Article  PubMed  CAS  Google Scholar 

  47. Ischiropoulos H, Gow A, Thom SR, Kooy NW, Royall JA, Crow JP (1999) Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol 301:367–373. https://doi.org/10.1016/S0076-6879(99)01100-3

    Article  PubMed  CAS  Google Scholar 

  48. Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S (2002) Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett 511(1–3):21–27. https://doi.org/10.1016/S0014-5793(01)03262-8

    Article  PubMed  CAS  Google Scholar 

  49. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65(10):1575–1582. https://doi.org/10.1016/S0006-2952(03)00083-2

    Article  PubMed  CAS  Google Scholar 

  50. Bonini MG, Rota C, Tomasi A, Mason RP (2006) The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 40(6):968–975. https://doi.org/10.1016/j.freeradbiomed.2005.10.042

    Article  PubMed  CAS  Google Scholar 

  51. Fleuranceau-Morel P, Barrier L, Fauconneau B, Piriou A, Huguet F (1999) Origin of 4-hydroxynonenal incubation-induced inhibition of dopamine transporter and Na+/K+ adenosine triphosphate in rat striatal synaptosomes. Neurosci Lett 277:91–94

    Article  PubMed  CAS  Google Scholar 

  52. Lehotsky J, Kaplan P, Racay P, Matejovicova M, Drgova A, Mezesova V (1999) Membrane ion transport systems during oxidative stress in rodent brain: protective effect of stobadine and other antioxidants. Life Sci 65:1951–1958

    Article  PubMed  CAS  Google Scholar 

  53. Kurella EG, Tyulina OV, Boldyrev AA (1999) Oxidative resistance of Na/K-ATPase cell. Mol Neurobiol 19:133–140

    Article  CAS  Google Scholar 

  54. Kurella E, Kukley M, Tyulina O, Dobrota D, Matejovicova M, Mezesova V, Boldyrev A (1997) Kinetic parameters of Na/KATPase modified by free radicals in vitro and in vivo. Ann N Y Acad Sci 834:661–665. https://doi.org/10.1111/j.1749-6632.1997.tb52344.x

    Article  PubMed  CAS  Google Scholar 

  55. Lees G (1993) The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci 114:119–122. https://doi.org/10.1016/0022-510X(93)90285-7

    Article  PubMed  CAS  Google Scholar 

  56. Yousef MI, El-Hendy HA, El-Demerdash FM, Elagamy EI (2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology 175:223–234. https://doi.org/10.1016/S0300-483X(02)00049-5

    Article  PubMed  CAS  Google Scholar 

  57. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71. https://doi.org/10.1016/0301-0082(94)90015-9

    Article  PubMed  CAS  Google Scholar 

  58. Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. Prog Neurobiol 73:397–445. https://doi.org/10.1016/j.pneurobio.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  59. Wheeler K, Walker J, Barker D (1975) Lipid requirement of the membrane sodium-plus-potassium ion-dependent adenosine triphosphatase system. Biochem J 146:713–722. https://doi.org/10.1042/bj1460713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gimpl G, Burger K, Fahrenholz F (1997) Cholesterol as modulator of receptor function. Biochemistry 36:10959–10974. https://doi.org/10.1021/bi963138w

    Article  PubMed  CAS  Google Scholar 

  61. Rogers JT, Richards JG, Wood CM (2003) Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 64:215–234. https://doi.org/10.1016/S0166-445X(03)00053-5

    Article  PubMed  CAS  Google Scholar 

  62. Miyake H, Kadoya A, Ohyashiki T (2003) Increase in molecular rigidity of the protein cooperation of brain Na+K+ATPase by modification with 4-hydroxy-2-nonenal. Biol Pharm Bull 26:1652–1658

    Article  PubMed  CAS  Google Scholar 

  63. Zamai TN, Titova NM, Zamai AS, Usoltseva OS, Yulenkova OV, Shumkova DA (2002) Effect of alcoholic intoxication on water content and activity of Na+,K+-ATPase and Ca-ATPase in rat brain. Bull Exp Biol Med 134:541–543

    Article  PubMed  CAS  Google Scholar 

  64. Cousin M, Nicholls D, Pocock J (1995) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J Neurochem 64:2097–2104. https://doi.org/10.1046/j.1471-4159.1995.64052097.x

    Article  PubMed  CAS  Google Scholar 

  65. Vignini A, Nanetti L, Moroni C, Tanase L, Bartolini M, Luzzi S, Provinciali L, Mazzanti L (2007) Modifications of platelet from Alzheimer disease patients: a possible relation between membrane properties and NO metabolites. Neurobiol Aging 28:987–994. https://doi.org/10.1016/j.neurobiolaging.2006.05.010

    Article  PubMed  CAS  Google Scholar 

  66. Bagh MB, Maiti AK, Jana S, Banerjee K, Roy A, Chakrabarti S (2008) Quinone and oxyradical scavenging properties of N-acetylcysteine prevent dopamine mediated inhibition of Na+, K+-ATPase and mitochondrial electron transport chain activity in rat brain: implications in the neuroprotective therapy of Parkinson’s disease. Free Radic Res 42:574–581. https://doi.org/10.1080/ 10715760802158430

    Article  PubMed  CAS  Google Scholar 

  67. Kawakami K, Ikeda K (2006) Modulation of neural activities by Na, K-ATPase alpha 2 subunit through functional coupling with transporters. Cell Mol Biol (Noisy-le-Grand) 52:92–96

    CAS  Google Scholar 

  68. Lees GJ, Leong W (1995) The sodium-potassium ATPase inhibitor ouabain is neurotoxic in the rat substantia nigra and striatum. Neurosci Lett 188:113–116. https://doi.org/10.1016/0304-3940(95)11413-Q

    Article  PubMed  CAS  Google Scholar 

  69. Ellis DZ, Rabe J, Sweadner KJ (2003) Global loss of Na, K-ATPase and its nitric oxide-mediated regulation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 23:4–51

    Article  Google Scholar 

  70. Dickey CA, Gordon MN, Wilcock DM, Herber DL, Freeman MJ, Morgan D (2005) Dysregulation of Na+/K+ ATPase by amyloid in APP + PS1 transgenic mice. BMC Neurosci 6:7. https://doi.org/10.1186/1471-2202-6-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Busanello EN, Viegas CM, Moura AP, Tonin AM, Grings M, Vargas CR, Wajner M (2010) In vitro evidence that phytanic acid compromises Na(+), K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats. Brain Res 1352:231–238. https://doi.org/10.1016/j.brainres.2010.07.012

    Article  PubMed  CAS  Google Scholar 

  72. Busanello EN, Viegas CM, Tonin AM, Grings M, Moura AP, de Oliveira AB, Eichler P, Wajner M (2011) Neurochemical evidence that pristanic acid impairs energy production and inhibits synaptic Na(+), K(+)-ATPase activity in brain of young rats. Neurochem Res 36:1101–1107. https://doi.org/10.1007/s11064-011-0453-y

    Article  PubMed  CAS  Google Scholar 

  73. Busanello EN, Zanatta A, Tonin AM, Viegas CM, Vargas CR, Leipnitz G, Ribeiro CA, Wajner M (2013) Marked inhibition of Na(+),K(+)-ATPase activity and the respiratory chain by phytanic acid in cerebellum from young rats: possible underlying mechanisms of cerebellar ataxia in Refsum disease. J Bioenerg Biomembr 45:137–144. https://doi.org/10.1007/s10863-012-9491-7

    Article  PubMed  CAS  Google Scholar 

  74. Seminotti B, Fernandes CG, Leipnitz G, Amaral AU, Zanatta A, Wajner M (2011) Neurochemical evidence that lysine inhibits synaptic Na(+), K(+)-ATPase activity and provokes oxidative damage in striatum of young rats in vivo. Neurochem Res 36:205–214. https://doi.org/10.1007/s11064-010-0302-4

    Article  PubMed  CAS  Google Scholar 

  75. Moura AP, Ribeiro CA, Zanatta A, Busanello EN, Tonin AM, Wajner M (2012) 3 Methylcrotonylglycine disrupts mitochondrial energy homeostasis and inhibits synaptic Na(+), K(+)-ATPase activity in brain of young rats. Cell Mol Neurobiol 32:297–307. https://doi.org/10.1007/s10571-011-9761-7

    Article  PubMed  CAS  Google Scholar 

  76. Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello EN, Zanatta A, Kist LW, Bogo MR et al (2012) Reduction of Na+,K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 107:375–382. https://doi.org/10.1016/j.ymgme.2012.08.016

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (#404883/2013-3), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (#2266-2551/14-2), Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (#PIBIC 27613), FIPE/HCPA, and Financiadora de Estudos e Projetos/Rede Instituto Brasileiro de Neurociência (# 01.06.0842-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Ethics declarations

The experimental protocol was approved by the Ethics Committee for animal research of the Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, and followed the “Principles of Laboratory Animal Care” (NIH publication 85-23, revised 1996). All efforts were made to minimize the number of animals used and their suffering.

Conflict of Interest

The authors declare that they have no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanatta, Â., Cecatto, C., Ribeiro, R.T. et al. S-Adenosylmethionine Promotes Oxidative Stress and Decreases Na+, K+-ATPase Activity in Cerebral Cortex Supernatants of Adolescent Rats: Implications for the Pathogenesis of S-Adenosylhomocysteine Hydrolase Deficiency. Mol Neurobiol 55, 5868–5878 (2018). https://doi.org/10.1007/s12035-017-0804-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0804-z

Keywords

Navigation