Skip to main content

Advertisement

Log in

MiRNAs are involved in chronic electroacupuncture tolerance in the rat hypothalamus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acupuncture tolerance is the gradual decrease in analgesic effect due to its prolonged application. However, its mechanism in terms of miRNA is still unknown. To explore the role of miRNAs in electroacupuncture (EA) tolerance of rats using deep sequencing, rats with more than a 50 % increase in tail flick latency (TFL) in response to EA were selected for this experiment. EA tolerance was induced by EA once daily for eight consecutive days. The hypothalami were harvested for deep sequencing. As a result, 49 differentially expressed miRNAs were identified and validated by real-time PCR. Of them, let-7b-5p, miR-148a-3p, miR-124-3p, miR-107-3p, and miR-370-3p were further confirmed to be related to EA tolerance by an intracerebroventricular injection of agomirs or antagomirs of these miRNAs. Potential targets of the 49 miRNAs were enriched in 9 pathways and 282 gene ontology (GO) terms. Five miRNAs were confirmed to participate in EA tolerance probably through the functional categories related to nerve impulse transmission, receptor signal pathways, and gene expression regulation, as well as pathways related to MAPK, neurotrophin, fatty acid metabolism, lysosome, and the degradation of valine, leucine, and isoleucine. Our findings reveal a characterized panel of the differentially expressed miRNAs in the hypothalamus in response to EA and thus provide a solid experimental framework for future analysis of the mechanisms underlying EA-induced tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Han JS, Li SJ, Tang J (1981) Tolerance to electroacupuncture and its cross tolerance to morphine. Neuropharmacology 20(6):593–596

    Article  CAS  PubMed  Google Scholar 

  2. Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85(4):355–375

    Article  PubMed  Google Scholar 

  3. Han JS (2001) Opioid and antiopioid peptides: a model of Yin-Yang balance in acupuncture mechanisms of pain modulation. In: Stux G, Hammerschlag R (eds) Clinical acupuncture. Springer, Berlin Heidelberg, pp 51–68

    Chapter  Google Scholar 

  4. Ni L, Lv ZB, An L, Liu DX (1987) Changes of binding ability of opioid receptors in the brain of rats with electroacupuncture tolerance (in Chinese). Zhen Ci Yan Jiu 03:222–225

    Google Scholar 

  5. Dong YN, Mao MH, Wang XM, Han JS (1998) Changes in the binding characteristics of central kappa-opioid receptor during the development of 100 Hz electroacupuncture (EA) tolerance in rats. Acta Physiologica Sinica 06:663–670

    Google Scholar 

  6. Huang C, Long H, Shi Y, Han J, Wan Y (2005) Ketamine enhances the efficacy to and delays the development of tolerance to electroacupuncture-induced antinociception in rats. Neurosci Lett 375(2):138–142

    Article  CAS  PubMed  Google Scholar 

  7. Li SJ, Tang J, Han JS (1982) The implication of central serotonin in electro-acupuncture tolerance in the rat. Sci China Ser B 25(6):620–629

    Google Scholar 

  8. Xie CW, Tang J, Han JS (1984) Central norepinephrine and tolerance to electroacupuncture analgesia (in Chinese). Sci China Ser B 02:12–13

    Google Scholar 

  9. Zhang ZX, Zhang YZ, Jia SP, Lu XJ, Yu RR, Wang XG, Chen RS (1987) Role of calcium in electron-acupuncture analgesia and the developments of analgesic tolerance to electro-acupuncture and morphine. Sci China Ser B 30(9):974–985

    CAS  Google Scholar 

  10. He Y, Yang C, Kirkmire CM, Wang ZJ (2010) Regulation of Opioid Tolerance by let-7 Family MicroRNA Targeting the mu Opioid Receptor. J Neurosci 30(30):10251–10258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu QF, Hwang CK, Zheng H, Wagley Y, Lin HY, Kim DK, Law PY, Loh HH et al (2013) MicroRNA 339 down-regulates mu-opioid receptor at the post-transcriptional level in response to opioid treatment. FASEB J 27(2):522–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Napadow V, Kettner N, Liu J, Li M, Kwong KK, Vangel M, Makris N, Audette J et al (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130(3):254–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Zhou W, Ruan X, Li R, Lee T, Weng X, Hu J, Yang G (2007) Activation of the hypothalamus characterizes the response to acupuncture stimulation in heroin addicts. Neurosci Lett 421(3):203–208

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh JC, Tu CH, Chen FP, Chen MC, Yeh TC, Cheng HC, Wu YT, Liu RS et al (2001) Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study. Neurosci Lett 307(2):105–108

    Article  CAS  PubMed  Google Scholar 

  15. Gao YZ, Guo SY, Yin QZ, Hisamitsu T, Jiang XH (2007) An individual variation study of electroacupuncture analgesia in rats using microarray. Am J Chin Med 35(5):767–778

    Article  CAS  PubMed  Google Scholar 

  16. Ko ES, Kim SK, Kim JT, Lee G, Han JB, Rho SW, Hong MC, Bae H et al (2006) The difference in mRNA expressions of hypothalamic CCK and CCK-A and -B receptors between responder and non-responder rats to high frequency electroacupuncture analgesia. Peptides 27(7):1841–1845

    Article  CAS  PubMed  Google Scholar 

  17. Huang C, Hu ZP, Jiang SZ, Li HT, Han JS, Wan Y (2007) CCKB receptor antagonist L365,260 potentiates the efficacy to and reverses chronic tolerance to electroacupuncture-induced analgesia in mice. Brain Res Bull 71(5):447–451

    Article  CAS  PubMed  Google Scholar 

  18. Tian JH, Zhang W, Fang Y, Xu W, Grandy DK, Han JS (1998) Endogenous orphanin FQ: evidence for a role in the modulation of electroacupuncture analgesia and the development of tolerance to analgesia produced by morphine and electroacupuncture. Brit J Pharmacol 124(1):21–26

    Article  CAS  Google Scholar 

  19. Han JS (2003) Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26(1):17–22

    Article  CAS  PubMed  Google Scholar 

  20. Xi Q, Guo Y, Guo Y, Wang J (2009) Brief investigation on acupuncture tolerance (in Chinese). J Clin Acupunct Moxibustion 25(12):43-44 + 71

  21. Guo HF, Tian J, Wang X, Fang Y, Hou Y, Han J (1996) Brain substrates activated by electroacupuncture (EA) of different frequencies (II): role of Fos/Jun proteins in EA-induced transcription of preproenkephalin and preprodynorphin genes. Mol Brain Res 43(1–2):167–173

    Article  CAS  PubMed  Google Scholar 

  22. Tian JH, Xu W, Zhang W, Fang Y, Grisel JE, Mogil JS, Grandy DK, Han JS (1997) Involvement of endogenous Orphanin FQ in electroacupuncture-induced analgesia. NeuroReport 8(2):497–500

    Article  CAS  PubMed  Google Scholar 

  23. Tang NM, Dong HW, Wang XM, Tsui ZC, Han JS (1997) Cholecystokinin antisense RNA increases the analgesic effect induced by electroacupuncture or low dose morphine: conversion of low responder rats into high responders. Pain 71(1):71–80

    Article  CAS  PubMed  Google Scholar 

  24. Davis CJ, Clinton JM, Krueger JM (2012) MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol 113(11):1756–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ge X, Han Z, Chen F, Wang H, Zhang B, Jiang R, Lei P, Zhang J (2015) miR-21 alleviates secondary blood–brain barrier damage after traumatic brain injury in rats. Brain Res 1603:150–157

    Article  CAS  PubMed  Google Scholar 

  26. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, Sano T, O’Tuathaigh C et al (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18(7):1087–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu LJ, Ouyang YB, Xiong X, Stary CM, Giffard RG (2015) Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol 264:1–7

    Article  CAS  PubMed  Google Scholar 

  28. Yang ZB, Zhang Z, Li TB, Lou Z, Li SY, Yang H, Yang J, Luo XJ et al (2014) Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clin Sci 127(12):679–689

    Article  CAS  PubMed  Google Scholar 

  29. Yang L, Wang S, Lim G, Sung B, Zeng Q, Mao J (2008) Inhibition of the ubiquitin–proteasome activity prevents glutamate transporter degradation and morphine tolerance. Pain 140(3):472–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu XG, Zhan ZZ, Xu L, Ma F, Li D, Guo ZH, Li N, Cao XT (2010) MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J Immunol 185(12):7244–7251

    Article  CAS  PubMed  Google Scholar 

  31. Gangadharan V, Kuner R (2013) Pain hypersensitivity mechanisms at a glance. Dis Model Mech 6(4):889–895

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park C, Xu ZZ, Berta T, Han QJ, Chen G, Liu XJ, Ji RR (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82(1):47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang R, Li M, Zang WQ, Chen XD, Wang YY, Li P, Du YW, Zhao GQ et al (2014) MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumor Biol 35(1):837–844

    Article  CAS  Google Scholar 

  34. Millan MJ (2011) MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr Opin Pharmacol 11(1):11–22

    Article  CAS  PubMed  Google Scholar 

  35. Lau WK, Lau YM, Zhang HQ, Wong SC, Bian ZX (2010) Electroacupuncture versus celecoxib for neuropathic pain in rat SNL model. Neuroscience 170(2):655–661

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZD, Wang CS, Gu GY, Li HP, Zhao HF, Wang K, Han F, Wang GN (2012) The effects of electroacupuncture at the ST36 (Zusanli) acupoint on cancer pain and transient receptor potential vanilloid subfamily 1 expression in Walker 256 tumor-bearing rats. Anesth Analg 114(4)

  37. Gao YH, Chen SP, Wang JY, Qiao LN, Meng FY, Xu QL, Liu JL (2012) Differential proteomics analysis of the analgesic effect of electroacupuncture intervention in the hippocampus following neuropathic pain in rats. BMC Complement Altern Med 12(1):1–11

    Article  Google Scholar 

  38. Xu XL, Li SQ, Lin YW, Chen H, Hu ZH, Mao YQ, Xu X, Wu J et al (2013) MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1. J Transl Med 11:276–276

    Article  PubMed  PubMed Central  Google Scholar 

  39. Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T (2007) Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 27(3):378–386

    Article  PubMed  Google Scholar 

  40. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14(5):872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Sommer C (2009) The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol Neurobiol 40(2):101–107

    Article  CAS  PubMed  Google Scholar 

  43. Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42(4):350–362

    Article  CAS  PubMed  Google Scholar 

  44. Trang T, Koblic P, Kawaja M, Jhamandas K (2009) Attenuation of opioid analgesic tolerance in p75 neurotrophin receptor null mutant mice. Neurosci Lett 451(1):69–73

    Article  CAS  PubMed  Google Scholar 

  45. Maione S, Bisogno T, de Novellis V, Palazzo E, Cristino L, Valenti M, Petrosino S, Guglielmotti V et al (2006) Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J Pharmacol Exp Ther 316(3):969–982

    Article  CAS  PubMed  Google Scholar 

  46. Tappe-Theodor A, Agarwal N, Katona I, Rubino T, Martini L, Swiercz J, Mackie K, Monyer H et al (2007) A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 27(15):4165–4177

    Article  CAS  PubMed  Google Scholar 

  47. Altun A, Yildirim K, Ozdemir E, Bagcivan I, Gursoy S, Durmus N (2015) Attenuation of morphine antinociceptive tolerance by cannabinoid CB1 and CB2 receptor antagonists. J Physiol Sci 6(5):407–415

    Article  Google Scholar 

  48. Fernstrom JD (2005) Branched-chain amino acids and brain function. J Nutr 135(6):1539S–1546S

    CAS  PubMed  Google Scholar 

  49. Xuan YT, Zhou ZF, Han JS (1982) Tolerance to electroacupuncture analgesia was reversed by microinjection of 5-hydroxytryptophan into nuclei accumbens in the rabbit. Int J Neurosci 17(3):157–161

    Article  CAS  PubMed  Google Scholar 

  50. Liao J, Xie QY, Zhang L, Ke MG (2014) Effects of electroacupuncture on Wnt-beta-catenin signal pathway in annulus fibrosus cells in intervertebral disc in rats with cervical spondylosis. Zhongguo Zhen Jiu 34(12):1203–1207

    PubMed  Google Scholar 

  51. Chung JY, Yoo DY, Im W, Choi JH, Yi SS, Youn HY, Hwang IK, Seong JK et al (2015) Electroacupuncture at the Zusanli and Baihui acupoints ameliorates type-2 diabetes-induced reductions in proliferating cells and differentiated neuroblasts in the hippocampal dentate gyrus with increasing brain-derived neurotrophic factor levels. J Vet Med Sci 77(2):167–173

    Article  PubMed  Google Scholar 

  52. Chen SZ, Han JS (1994) High frequency electroacupuncture induced changes of IP3 level in rat brain and spinal cord. Chin Med J 107(06):440–443

    CAS  PubMed  Google Scholar 

  53. Ren MF, Han JS (1979) Rat tail flick acupuncture analgesia model. Chin Med J 92(8):576–582

    Google Scholar 

  54. Reyes TM, Walker JR, DeCino C, Hogenesch JB, Sawchenko PE (2003) Categorically distinct acute stressors elicit dissimilar transcriptional profiles in the paraventricular nucleus of the hypothalamus. J Neurosci 23(13):5607

    CAS  PubMed  Google Scholar 

  55. Wen M, Shen Y, Shi S, Tang T (2012) miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52

    Article  PubMed  Google Scholar 

  57. Zhou LA, Chen JH, Li ZZ, Li XX, Hu XD, Huang Y, Zhao XK, Liang CZ, Wang Y, Sun LA, Shi M, Xu XH, Shen F, Chen MS, Han ZJ, Peng ZY, Zhai QN, Chen J, Zhang ZF, Yang RL, Ye JX, Guan ZC, Yang HM, Gui YT, Wang J, Cai ZM, Zhang XQ (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PloS one 5(12):e15224

  58. Deng X, Zhong Y, Gu L, Shen W, Guo J (2013) MiR-21 involve in ERK-mediated upregulation of MMP9 in the rat hippocampus following cerebral ischemia. Brain Res Bull 94:56–62

    Article  CAS  PubMed  Google Scholar 

  59. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was funded by the National Natural Science Foundation of China (grant numbers 31272619 and 31472246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Ding.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

All experimental procedures were approved by the Animal Care and Use Committee of Huazhong Agricultural University.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 182 kb)

ESM 2

(PDF 188 kb)

ESM 3

(PDF 622 kb)

ESM 4

(PDF 217 kb)

ESM 5

(PDF 982 kb)

ESM 6

(PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Ding, Y., Feng, Y. et al. MiRNAs are involved in chronic electroacupuncture tolerance in the rat hypothalamus. Mol Neurobiol 54, 1429–1439 (2017). https://doi.org/10.1007/s12035-016-9759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9759-8

Keywords

Navigation