Skip to main content

Advertisement

Log in

Dysregulation of Intracellular Ca2+ in Dystrophic Cortical and Hippocampal Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is an inherited X-linked disorder characterized by skeletal muscle wasting, cardiomyopathy, as well as cognitive impairment. Lack of dystrophin in striated muscle produces dyshomeostasis of resting intracellular Ca2+ ([Ca2+]i), Na+ ([Na+]i), and oxidative stress. Here, we test the hypothesis that similar to striated muscle cells, an absence of dystrophin in neurons from mdx mice (a mouse model for DMD) is also associated with dysfunction of [Ca2+]i homeostasis and oxidative stress. [Ca2+]i and [Na+]i in pyramidal cortical and hippocampal neurons from 3 and 6 months mdx mice were elevated compared to WT in an age-dependent manner. Removal of extracellular Ca2+ reduced [Ca2+]i in both WT and mdx neurons, but the decrease was greater and age-dependent in the latter. GsMTx-4 (a blocker of stretch-activated cation channels) significantly decreased [Ca2+]i and [Na+]i in an age-dependent manner in all mdx neurons. Blockade of ryanodine receptors (RyR) or inositol triphosphate receptors (IP3R) reduced [Ca2+]i in mdx. Mdx neurons showed elevated and age-dependent reactive oxygen species (ROS) production and an increase in neuronal damage. In addition, mdx mice showed a spatial learning deficit compared to WT. GsMTx-4 intraperitoneal injection reduced neural [Ca2+]i and improved learning deficit in mdx mice. In summary, mdx neurons show an age-dependent dysregulation in [Ca2+]i and [Na+]i which is mediated by plasmalemmal cation influx and by intracellular Ca2+ release through the RyR and IP3R. Also, mdx neurons have elevated ROS production and more extensive cell damage. Finally, a reduction of [Ca2+]i improved cognitive function in mdx mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoffman EP, Hudecki MS, Rosenberg PA, Pollina CM, Kunkel LM (1988) Cell and fiber-type distribution of dystrophin. Neuron 1(5):411–420

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  CAS  PubMed  Google Scholar 

  3. Lopez JR, Briceno LE, Sanchez V, Horvart D (1987) Myoplasmic (Ca2+) in Duchenne muscular dystrophy patients. Acta Cient Venez 38(4):503–504

    CAS  PubMed  Google Scholar 

  4. Altamirano F, Lopez JR, Henriquez C, Molinski T, Allen PD, Jaimovich E (2012) Increased resting intracellular calcium modulates NF-kappaB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes. J Biol Chem 287(25):20876–20887. doi:10.1074/jbc.M112.344929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mijares A, Altamirano F, Kolster J, Adams JA, Lopez JR (2014) Age-dependent changes in diastolic Ca(2+) and Na(+) concentrations in dystrophic cardiomyopathy: role of Ca(2+) entry and IP3. Biochem Biophys Res Commun 452(4):1054–1059. doi:10.1016/j.bbrc.2014.09.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82(2):291–329. doi:10.1152/physrev.00028.2001

    Article  CAS  PubMed  Google Scholar 

  7. van Westering TL, Betts CA, Wood MJ (2015) Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 20(5):8823–8855. doi:10.3390/molecules20058823

    Article  PubMed  Google Scholar 

  8. Shirokova N, Niggli E (2013) Cardiac phenotype of Duchenne muscular dystrophy: insights from cellular studies. J Mol Cell Cardiol 58:217–224. doi:10.1016/j.yjmcc.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  9. Nedergaard M, Verkhratsky A (2010) Calcium dyshomeostasis and pathological calcium signalling in neurological diseases. Cell Calcium 47(2):101–102. doi:10.1016/j.ceca.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blake DJ, Hawkes R, Benson MA, Beesley PW (1999) Different dystrophin-like complexes are expressed in neurons and glia. J Cell Biol 147(3):645–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knuesel I, Bornhauser BC, Zuellig RA, Heller F, Schaub MC, Fritschy JM (2000) Differential expression of utrophin and dystrophin in CNS neurons: an in situ hybridization and immunohistochemical study. J Comp Neurol 422(4):594–611

    Article  CAS  PubMed  Google Scholar 

  12. Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3(4):283–291. doi:10.1038/ng0493-283

    Article  CAS  PubMed  Google Scholar 

  13. Leal SL, Yassa MA (2015) Neurocognitive aging and the hippocampus across species. Trends Neurosci 38(12):800–812. doi:10.1016/j.tins.2015.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson JL, Head SI, Rae C, Morley JW (2002) Brain function in Duchenne muscular dystrophy. Brain 125(Pt 1):4–13

    Article  CAS  PubMed  Google Scholar 

  15. Felisari G, Martinelli Boneschi F, Bardoni A, Sironi M, Comi GP, Robotti M, Turconi AC, Lai M et al (2000) Loss of Dp140 dystrophin isoform and intellectual impairment in Duchenne dystrophy. Neurology 55(4):559–564

    Article  CAS  PubMed  Google Scholar 

  16. Nardes F, Araujo AP, Ribeiro MG (2012) Mental retardation in Duchenne muscular dystrophy. J Pediatr 88(1):6–16. doi:10.2223/JPED.2148

    Article  Google Scholar 

  17. Hinton VJ, Fee RJ, Goldstein EM, De Vivo DC (2007) Verbal and memory skills in males with Duchenne muscular dystrophy. Dev Med Child Neurol 49(2):123–128. doi:10.1111/j.1469-8749.2007.00123.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miranda R, Sebrie C, Degrouard J, Gillet B, Jaillard D, Laroche S, Vaillend C (2009) Reorganization of inhibitory synapses and increased PSD length of perforated excitatory synapses in hippocampal area CA1 of dystrophin-deficient mdx mice. Cereb Cortex 19(4):876–888. doi:10.1093/cercor/bhn135

    Article  CAS  PubMed  Google Scholar 

  19. Minciacchi D, Del Tongo C, Carretta D, Nosi D, Granato A (2010) Alterations of the cortico-cortical network in sensori-motor areas of dystrophin deficient mice. Neuroscience 166(4):1129–1139. doi:10.1016/j.neuroscience.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  20. Perronnet C, Chagneau C, Le Blanc P, Samson-Desvignes N, Mornet D, Laroche S, De La Porte S, Vaillend C (2012) Upregulation of brain utrophin does not rescue behavioral alterations in dystrophin-deficient mice. Hum Mol Genet 21(10):2263–2276. doi:10.1093/hmg/dds047

    Article  CAS  PubMed  Google Scholar 

  21. Vaillend C, Billard JM, Laroche S (2004) Impaired long-term spatial and recognition memory and enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd(mdx) mouse. Neurobiol Dis 17(1):10–20. doi:10.1016/j.nbd.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  22. Vaillend C, Rendon A, Misslin R, Ungerer A (1995) Influence of dystrophin-gene mutation on mdx mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing tasks. Behav Genet 25(6):569–579

    Article  CAS  PubMed  Google Scholar 

  23. Chaussenot R, Edeline JM, Le Bec B, El Massioui N, Laroche S, Vaillend C (2015) Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: a reappraisal from sensory to executive processes. Neurobiol Learn Mem 124:111–122. doi:10.1016/j.nlm.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  24. Brini M, Cali T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814. doi:10.1007/s00018-013-1550-7

    Article  CAS  PubMed  Google Scholar 

  25. Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A (2008) Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J Neurochem 105(1):262–271. doi:10.1111/j.1471-4159.2007.05135.x

    Article  CAS  PubMed  Google Scholar 

  26. Turner PR, Westwood T, Regen CM, Steinhardt RA (1988) Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335(6192):735–738. doi:10.1038/335735a0

    Article  CAS  PubMed  Google Scholar 

  27. Altamirano F, Perez CF, Liu M, Widrick J, Barton ER, Allen PD, Adams JA, Lopez JR (2014) Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice. PLoS One 9(9):e106590. doi:10.1371/journal.pone.0106590

    Article  PubMed  PubMed Central  Google Scholar 

  28. Altamirano F, Valladares D, Henriquez-Olguin C, Casas M, Lopez JR, Allen PD, Jaimovich E (2013) Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice. PLoS One 8(12):e81222. doi:10.1371/journal.pone.0081222

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hopf FW, Steinhardt RA (1992) Regulation of intracellular free calcium in normal and dystrophic mouse cerebellar neurons. Brain Res 578(1–2):49–54

    Article  CAS  PubMed  Google Scholar 

  30. Haws CM, Lansman JB (1991) Calcium-permeable ion channels in cerebellar neurons from mdx mice. Proc Biol Sci 244(1311):185–189. doi:10.1098/rspb.1991.0068

    Article  CAS  PubMed  Google Scholar 

  31. Carretta D, Santarelli M, Vanni D, Ciabatti S, Sbriccoli A, Pinto F, Minciacchi D (2003) Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne’s muscular dystrophy: selective changes in the sensorimotor cortex. J Comp Neurol 456(1):48–59. doi:10.1002/cne.10506

    Article  CAS  PubMed  Google Scholar 

  32. Spencer MJ, Tidball JG (1992) Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res 203(1):107–114

    Article  CAS  PubMed  Google Scholar 

  33. Tuckett E, Gosetti T, Hayes A, Rybalka E, Verghese E (2015) Increased calcium in neurons in the cerebral cortex and cerebellum is not associated with cell loss in the mdx mouse model of Duchenne muscular dystrophy. Neuroreport 26(13):785–790. doi:10.1097/WNR.0000000000000425

    Article  CAS  PubMed  Google Scholar 

  34. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222(3):236–245

    Article  CAS  PubMed  Google Scholar 

  35. Droge W (2003) Oxidative stress and aging. Adv Exp Med Biol 543:191–200

    Article  CAS  PubMed  Google Scholar 

  36. Terrill JR, Radley-Crabb HG, Iwasaki T, Lemckert FA, Arthur PG, Grounds MD (2013) Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J 280(17):4149–4164. doi:10.1111/febs.12142

    Article  CAS  PubMed  Google Scholar 

  37. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. doi:10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  38. Durany N, Munch G, Michel T, Riederer P (1999) Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):68–73

    Article  PubMed  Google Scholar 

  39. Abraham S, Soundararajan CC, Vivekanandhan S, Behari M (2005) Erythrocyte antioxidant enzymes in Parkinson’s disease. Indian J Med Res 121(2):111–115

    CAS  PubMed  Google Scholar 

  40. Comim CM, Cassol-Jr OJ, Constantino LC, Constantino LS, Petronilho F, Tuon L, Vainzof M, Dal-Pizzol F et al (2009) Oxidative variables and antioxidant enzymes activities in the mdx mouse brain. Neurochem Int 55(8):802–805. doi:10.1016/j.neuint.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  41. Zundorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14(7):1275–1288. doi:10.1089/ars.2010.3359

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu X, Zhan M, Duan W, Prabhu V, Brenneman R, Wood W, Firman J, Li H et al (2007) Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender. Genome Biol 8(11):R234. doi:10.1186/gb-2007-8-11-r234

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891. doi:10.1038/nature02661

    Article  CAS  PubMed  Google Scholar 

  44. Viel JJ, McManus DQ, Cady C, Evans MS, Brewer GJ (2001) Temperature and time interval for culture of postmortem neurons from adult rat cortex. J Neurosci Res 64(4):311–321

    Article  CAS  PubMed  Google Scholar 

  45. Shen X, Ma L, Dong W, Wu Q, Gao Y, Luo C, Zhang M, Chen X et al (2016) Autophagy regulates intracerebral hemorrhage induced neural damage via apoptosis and NF-kappaB pathway. Neurochem Int 96:100–112. doi:10.1016/j.neuint.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  46. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. The Journal of neuroscience : the official journal of the Society for Neuroscience 23(12):4798–4802

    CAS  Google Scholar 

  47. Eltit JM, Ding X, Pessah IN, Allen PD, Lopez JR (2013) Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia. FASEB J 27(3):991–1000. doi:10.1096/fj.12-218354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lopez JR, Linares N, Pessah IN, Allen PD (2005) Enhanced response to caffeine and 4-chloro-m-cresol in malignant hyperthermia-susceptible muscle is related in part to chronically elevated resting [Ca2+]i. Am J Physiol Cell Physiol 288(3):C606–C612. doi:10.1152/ajpcell.00297.2004

    Article  CAS  PubMed  Google Scholar 

  49. Taylor PJ, Betts GA, Maroulis S, Gilissen C, Pedersen RL, Mowat DR, Johnston HM, Buckley MF (2010) Dystrophin gene mutation location and the risk of cognitive impairment in Duchenne muscular dystrophy. PLoS One 5(1):e8803. doi:10.1371/journal.pone.0008803

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu H, Jin Y, Arias J, Bassuk J, Uryash A, Kurlansky P, Webster K, Adams JA (2009) In vivo upregulation of nitric oxide synthases in healthy rats. Nitric oxide: biology and chemistry / official journal of the Nitric Oxide Society 21(1):63–68. doi:10.1016/j.niox.2009.05.004

    Article  CAS  Google Scholar 

  51. Handattu SP, Garber DW, Monroe CE, van Groen T, Kadish I, Nayyar G, Cao D, Palgunachari MN et al (2009) Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer’s disease. Neurobiol Dis 34(3):525–534. doi:10.1016/j.nbd.2009.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faes C, Aerts M, Geys H, De Schaepdrijver L (2010) Modeling spatial learning in rats based on Morris water maze experiments. Pharm Stat 9(1):10–20. doi:10.1002/pst.361

    Article  PubMed  Google Scholar 

  53. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  54. Sesay AK, Errington ML, Levita L, Bliss TV (1996) Spatial learning and hippocampal long-term potentiation are not impaired in mdx mice. Neurosci Lett 211(3):207–210

    Article  CAS  PubMed  Google Scholar 

  55. Block F (1999) Global ischemia and behavioural deficits. Prog Neurobiol 58(3):279–295

    Article  CAS  PubMed  Google Scholar 

  56. Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562(Pt 2):367–380. doi:10.1113/jphysiol.2004.075275

    Article  CAS  PubMed  Google Scholar 

  57. Ward ML, Williams IA, Chu Y, Cooper PJ, Ju YK, Allen DG (2008) Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Prog Biophys Mol Biol 97(2–3):232–249. doi:10.1016/j.pbiomolbio.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  58. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115(5):583–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gafni J, Munsch JA, Lam TH, Catlin MC, Costa LG, Molinski TF, Pessah IN (1997) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19(3):723–733

    Article  CAS  PubMed  Google Scholar 

  60. Ohashi R, Sakata S, Naito A, Hirashima N, Tanaka M (2014) Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells. Dev Neurobiol 74(4):467–480. doi:10.1002/dneu.22139

    Article  CAS  PubMed  Google Scholar 

  61. Lidov HG (1996) Dystrophin in the nervous system. Brain Pathol 6(1):63–77

    Article  CAS  PubMed  Google Scholar 

  62. Rowe WB, Blalock EM, Chen KC, Kadish I, Wang D, Barrett JE, Thibault O, Porter NM et al (2007) Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 27(12):3098–3110. doi:10.1523/JNEUROSCI.4163-06.2007

    Article  CAS  Google Scholar 

  63. Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14(7):1261–1273. doi:10.1089/ars.2010.3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raza M, Deshpande LS, Blair RE, Carter DS, Sombati S, DeLorenzo RJ (2007) Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci Lett 418(1):77–81. doi:10.1016/j.neulet.2007.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463. doi:10.1016/j.tins.2008.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alvarez-Leefmans FJ, Rink TJ, Tsien RY (1981) Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes. J Physiol 315:531–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsien RY, Rink TJ (1981) Ca2+-selective electrodes: a novel PVC-gelled neutral carrier mixture compared with other currently available sensors. J Neurosci Methods 4(1):73–86

    Article  CAS  PubMed  Google Scholar 

  68. Mehler MF, Haas KZ, Kessler JA, Stanton PK (1992) Enhanced sensitivity of hippocampal pyramidal neurons from mdx mice to hypoxia-induced loss of synaptic transmission. Proc Natl Acad Sci U S A 89(6):2461–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49(2):249–270. doi:10.1016/j.toxicon.2006.09.030

    Article  CAS  PubMed  Google Scholar 

  70. Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409(6816):35–36. doi:10.1038/35051165

    Article  CAS  PubMed  Google Scholar 

  71. Firth AL, Remillard CV, Yuan JX (2007) TRP channels in hypertension. Biochim Biophys Acta 1772(8):895–906. doi:10.1016/j.bbadis.2007.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lanner JT (2012) Ryanodine receptor physiology and its role in disease. Adv Exp Med Biol 740:217–234. doi:10.1007/978-94-007-2888-2_9

    Article  CAS  PubMed  Google Scholar 

  73. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21. doi:10.1038/35036035

    Article  CAS  PubMed  Google Scholar 

  74. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279. doi:10.1152/physrev.00004.2004

    Article  CAS  PubMed  Google Scholar 

  75. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S et al (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607. doi:10.1038/nchembio821

    Article  CAS  PubMed  Google Scholar 

  76. Tracey I, Scott RB, Thompson CH, Dunn JF, Barnes PR, Styles P, Kemp GJ, Rae CD et al (1995) Brain abnormalities in Duchenne muscular dystrophy: phosphorus-31 magnetic resonance spectroscopy and neuropsychological study. Lancet 345(8960):1260–1264

    Article  CAS  PubMed  Google Scholar 

  77. Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK (1993) Cellular energetics of dystrophic muscle. J Neurol Sci 116(2):201–206

    Article  CAS  PubMed  Google Scholar 

  78. Pulido SM, Passaquin AC, Leijendekker WJ, Challet C, Wallimann T, Ruegg UT (1998) Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett 439(3):357–362

    Article  CAS  PubMed  Google Scholar 

  79. Griffin JL, Williams HJ, Sang E, Clarke K, Rae C, Nicholson JK (2001) Metabolic profiling of genetic disorders: a multitissue (1)H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal Biochem 293(1):16–21. doi:10.1006/abio.2001.5096

    Article  CAS  PubMed  Google Scholar 

  80. Rae C, Griffin JL, Blair DH, Bothwell JH, Bubb WA, Maitland A, Head S (2002) Abnormalities in brain biochemistry associated with lack of dystrophin: studies of the mdx mouse. Neuromuscul Disord 12(2):121–129

    Article  PubMed  Google Scholar 

  81. Wang H, Joseph JA (2000) Mechanisms of hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic Biol Med 28(8):1222–1231

    Article  CAS  PubMed  Google Scholar 

  82. Oliveira AM, Bading H, Mauceri D (2014) Dysfunction of neuronal calcium signaling in aging and disease. Cell Tissue Res 357(2):381–383. doi:10.1007/s00441-014-1954-1

    Article  PubMed  Google Scholar 

  83. Paula-Lima AC, Adasme T, Hidalgo C (2014) Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 21(6):892–914. doi:10.1089/ars.2013.5796

    Article  CAS  PubMed  Google Scholar 

  84. Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJ, den Dunnen JT, t Hoen PA (2005) Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 6:98. doi:10.1186/1471-2164-6-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lidov HG, Byers TJ, Kunkel LM (1993) The distribution of dystrophin in the murine central nervous system: an immunocytochemical study. Neuroscience 54(1):167–187

    Article  CAS  PubMed  Google Scholar 

  86. Gorecki D, Geng Y, Thomas K, Hunt SP, Barnard EA, Barnard PJ (1991) Expression of the dystrophin gene in mouse and rat brain. Neuroreport 2(12):773–776

    Article  CAS  PubMed  Google Scholar 

  87. Muntoni F, Mateddu A, Serra G (1991) Passive avoidance behaviour deficit in the mdx mouse. Neuromuscul Disord 1(2):121–123

    Article  CAS  PubMed  Google Scholar 

  88. Vaillend C, Billard JM, Claudepierre T, Rendon A, Dutar P, Ungerer A (1998) Spatial discrimination learning and CA1 hippocampal synaptic plasticity in mdx and mdx3cv mice lacking dystrophin gene products. Neuroscience 86(1):53–66

    Article  CAS  PubMed  Google Scholar 

  89. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90

    Article  PubMed  Google Scholar 

  90. Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris water maze in the study of memory and learning. Int J Neurosci 48(1–2):29–69

    Article  CAS  PubMed  Google Scholar 

  91. Begley DJ (2004) ABC transporters and the blood-brain barrier. Curr Pharm Des 10(12):1295–1312

    Article  CAS  PubMed  Google Scholar 

  92. Tonkikh A, Janus C, El-Beheiry H, Pennefather PS, Samoilova M, McDonald P, Ouanounou A, Carlen PL (2006) Calcium chelation improves spatial learning and synaptic plasticity in aged rats. Exp Neurol 197(2):291–300. doi:10.1016/j.expneurol.2005.06.014

    Article  CAS  PubMed  Google Scholar 

  93. Lu CB, Hamilton JB, Powell AD, Toescu EC, Vreugdenhil M (2011) Effect of ageing on CA3 interneuron sAHP and gamma oscillations is activity-dependent. Neurobiol Aging 32(5):956–965. doi:10.1016/j.neurobiolaging.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  94. Tsukuda K, Mogi M, Li JM, Iwanami J, Min LJ, Sakata A, Fujita T, Iwai M et al (2008) Diabetes-associated cognitive impairment is improved by a calcium channel blocker, nifedipine. Hypertension 51(2):528–533. doi:10.1161/HYPERTENSIONAHA.107.101634

    Article  CAS  PubMed  Google Scholar 

  95. Mehler MF (2000) Brain dystrophin, neurogenetics and mental retardation. Brain Res Brain Res Rev 32(1):277–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Florida Heart Research Institute (JAA), IDAs University of California 3-V440LP2 (JRL) supported the research reported in this publication. We would like to thank Dr. Ray Zhang for his help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Lopez.

Electronic Supplementary Material

Supplementary Fig. 1

Expression of Dp71 and utrophin. a Representative Western blots of Dp71 and utrophin (UTR) and respective protein loading control Tubulin, in 3- and 6-month-old WT and mdx neurons. Expression of Dp71 and UTR was reduced in an age-dependent manner in cortical neurons of mdx mice. b Protein expression of Dp71 was significantly reduced in 3- and 6-month mdx neurons compared to age-matched WT (p < 0.001). c Protein expression of utrophin was also significantly reduced in both 3- and 6-month mdx neurons compared to age-matched WT (p < 0.001). (GIF 85 kb)

High resolution (TIFF 2355 kb)

Supplementary Fig. 2

Protein level of α- and β-dystroglycan and sarcoglycan. a. Representative Western blots of α (α-DG) and β (β-DG) dystroglycan and α (α-SG) and β (β-SG) sarcoglycan and respective protein loading control Tubulin in 3- and 6-month-old WT and mdx neurons. Expression of α- and β-dystroglycan was reduced in an age-dependent manner (p < 0.001) in mdx cortical neurons; however, the decrease was most marked for β- than α-dystroglycan. Expression of α- and β-sarcoglycan was also significantly different between WT and mdx at either 3 or 6 months. b Protein expression of α-DG was significantly reduced in 6-month mdx neurons compared to age-matched WT (p < 0.001). c Protein expression of β-DG was also significantly reduced in both 3- and 6-month mdx neurons compared to age-matched WT (p < 0.001). d α-SG was significantly reduced in mdx cortical neurons at both 3 and 6 months compared to WT (p < 0.01). e β-SG was also significantly reduced in mdx cortical neurons at both 3 and 6 months compared to WT (p < 0.001) (GIF 82 kb)

High Resolution (TIFF 2232 kb)

Supplementary Fig. 3

Transient receptor potential cation channel (TRPC)-1, TRPC-4, and TRPC-6 protein levels. a Representative Western blots of transient receptor potential cation channels (TRPC-1, TRPC-4, and TRPC-6) and respective protein loading control Tubulin, in 3- and 6-month-old WT and mdx neurons. b TRPC-1 expression was unchanged at 3 months between WT and mdx. In contrast, TRPC-1 was significantly overexpressed in 6-month-old mdx neurons compared to WT (p < 0.001). c TRPC-4 was significantly overexpressed in both 3- and 6-month mdx neurons compared to WT age-matched controls (p < 0.01). d TRPC-6 expression was unchanged at 3 months between WT and mdx but significantly overexpressed in 6-month-old mdx neurons compared to age-matched WT (p < 0.001). (GIF 102 kb)

High Resolution (TIFF 3184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, J.R., Kolster, J., Uryash, A. et al. Dysregulation of Intracellular Ca2+ in Dystrophic Cortical and Hippocampal Neurons. Mol Neurobiol 55, 603–618 (2018). https://doi.org/10.1007/s12035-016-0311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0311-7

Keywords

Navigation