Skip to main content
Log in

Acetyl-l-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-l-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

6-OHDA:

6-Hydroxy dopamine

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

MWM:

Morris water maze

OFA:

Open field activity test

MFB:

Medial forebrain bundle

TH:

Tyrosine hydroxylase

DAergic:

Dopaminergic

DRD1:

Dopamine receptor D1

GLT-1:

Glutamate transporter-1

ALCAR:

Acetyl-l-carnitine

VTA:

Ventral tagmental area

SNpc:

Substantia nigra pars compacta

PFC:

Prefrontal cortex

iNOS:

Inducible nitric oxide synthase

GFAP:

Glial fibrillary acidic protein

NeuN:

Neuronal nuclei

References

  1. Carvalho MM, Campos FL, Coimbra B, Pego JM, Rodrigues C, Lima R, Rodrigues AJ, Sousa N et al (2013) Behavioral characterization of the 6-hydroxidopamine model of Parkinson’s disease and pharmacological rescuing of non-motor deficits. Mol Neurodegener 8:14. doi:10.1186/1750-1326-8-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474. doi:10.1016/S1474-4422(09)70068-7

    Article  CAS  PubMed  Google Scholar 

  3. Goetz CG, Emre M, Dubois B (2008) Parkinson’s disease dementia: definitions, guidelines, and research perspectives in diagnosis. Ann Neurol 64(Suppl 2):S81–S92. doi:10.1002/ana.21455

    PubMed  Google Scholar 

  4. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316. doi:10.1146/annurev.neuro.30.051606.094341

    Article  CAS  PubMed  Google Scholar 

  5. Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668(1–2):71–79

    Article  PubMed  Google Scholar 

  6. Wang Q, Wang PH, McLachlan C, Wong PT (2005) Simvastatin reverses the downregulation of dopamine D1 and D2 receptor expression in the prefrontal cortex of 6-hydroxydopamine-induced parkinsonian rats. Brain Res 1045(1–2):229–233. doi:10.1016/j.brainres.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  7. Bardgett ME, Henry JD (1999) Locomotor activity and accumbens Fos expression driven by ventral hippocampal stimulation require D1 and D2 receptors. Neuroscience 94(1):59–70

    Article  CAS  PubMed  Google Scholar 

  8. Packard MG, White NM (1991) Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav Neurosci 105(2):295–306

    Article  CAS  PubMed  Google Scholar 

  9. Ortiz O, Delgado-Garcia JM, Espadas I, Bahi A, Trullas R, Dreyer JL, Gruart A, Moratalla R (2010) Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a−/− mice and in hippocampal siRNA silenced Drd1a mice. J Neurosci 30(37):12288–12300. doi:10.1523/JNEUROSCI.2655-10.2010

    Article  CAS  PubMed  Google Scholar 

  10. Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287(5460):2020–2022

    Article  CAS  PubMed  Google Scholar 

  11. Muller U, von Cramon DY, Pollmann S (1998) D1- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 18(7):2720–2728

    CAS  PubMed  Google Scholar 

  12. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics : the Journal of the American Society for Experimental NeuroTherapeutics 7(4):354–365. doi:10.1016/j.nurt.2010.05.014

    Article  CAS  Google Scholar 

  13. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1–2):208–210

    Article  CAS  PubMed  Google Scholar 

  14. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16(11):1474–1476. doi:10.1096/fj.02-0216fje

    Article  CAS  PubMed  Google Scholar 

  15. Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T (1999) Increase in level of tumor necrosis factor (TNF)-alpha in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-DOPA on the TNF-alpha induction. Neurosci Lett 268(2):101–104

    Article  CAS  PubMed  Google Scholar 

  16. McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG (2006) Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 26(37):9365–9375. doi:10.1523/JNEUROSCI.1504-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferger B, Leng A, Mura A, Hengerer B, Feldon J (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 89(4):822–833. doi:10.1111/j.1471-4159.2004.02399.x

    Article  CAS  PubMed  Google Scholar 

  18. Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM et al (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319(1):25–28

    Article  CAS  PubMed  Google Scholar 

  19. Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72(2):355–363

    Article  CAS  PubMed  Google Scholar 

  20. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74(5):2213–2216

    Article  CAS  PubMed  Google Scholar 

  21. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 90(15):7240–7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation 3:6. doi:10.1186/1742-2094-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Andreasson KI, Savonenko A, Vidensky S, Goellner JJ, Zhang Y, Shaffer A, Kaufmann WE et al (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 21(20):8198–8209

    CAS  PubMed  Google Scholar 

  24. Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, Isakson PC, Chen J et al (1998) Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci U S A 95(18):10954–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Czerniawski J, Guzowski JF (2014) Acute neuroinflammation impairs context discrimination memory and disrupts pattern separation processes in hippocampus. J Neurosci 34(37):12470–12480. doi:10.1523/JNEUROSCI.0542-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agnello D, Villa P, Ghezzi P (2000) Increased tumor necrosis factor and interleukin-6 production in the central nervous system of interleukin-10-deficient mice. Brain Res 869(1–2):241–243

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Z, Peng X, Insolera R, Fink DJ, Mata M (2009) Interleukin-10 provides direct trophic support to neurons. J Neurochem 110(5):1617–1627. doi:10.1111/j.1471-4159.2009.06263.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park KW, Lee HG, Jin BK, Lee YB (2007) Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp Mol Med 39(6):812–819. doi:10.1038/emm.2007.88

    Article  CAS  PubMed  Google Scholar 

  29. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  30. Tolosa L, Caraballo-Miralles V, Olmos G, Llado J (2011) TNF-alpha potentiates glutamate-induced spinal cord motoneuron death via NF-kappaB. Mol Cell Neurosci 46(1):176–186. doi:10.1016/j.mcn.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  31. Chung EK, Chen LW, Chan YS, Yung KK (2008) Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 511(4):421–437. doi:10.1002/cne.21852

    Article  CAS  PubMed  Google Scholar 

  32. Mookherjee P, Green PS, Watson GS, Marques MA, Tanaka K, Meeker KD, Meabon JS, Li N et al (2011) GLT-1 loss accelerates cognitive deficit onset in an Alzheimer’s disease animal model. J Alzheimers Dis 26(3):447–455. doi:10.3233/JAD-2011-110503

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    Article  CAS  PubMed  Google Scholar 

  34. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27(16):4253–4260. doi:10.1523/JNEUROSCI.0211-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mroczkowska JE, Roux FS, Nalecz MJ, Nalecz KA (2000) Blood-brain barrier controls carnitine level in the brain: a study on a model system with RBE4 cells. Biochem Biophys Res Commun 267(1):433–437. doi:10.1006/bbrc.1999.1923

    Article  CAS  PubMed  Google Scholar 

  36. Shug AL, Schmidt MJ, Golden GT, Fariello RG (1982) The distribution and role of carnitine in the mammalian brain. Life Sci 31(25):2869–2874

    Article  CAS  PubMed  Google Scholar 

  37. Manfridi A, Forloni GL, Arrigoni-Martelli E, Mancia M (1992) Culture of dorsal root ganglion neurons from aged rats: effects of acetyl-l-carnitine and NGF. Int J Dev Neurosci 10(4):321–329

    Article  CAS  PubMed  Google Scholar 

  38. Bianchetti A, Rozzini R, Trabucchi M (2003) Effects of acetyl-L-carnitine in Alzheimer’s disease patients unresponsive to acetylcholinesterase inhibitors. Curr Med Res Opin 19(4):350–353. doi:10.1185/030079903125001776

    CAS  PubMed  Google Scholar 

  39. Jiang X, Tian Q, Wang Y, Zhou XW, Xie JZ, Wang JZ, Zhu LQ (2011) Acetyl-l-carnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositol-3 kinase and protein kinase C. J Neurochem 118(5):864–878. doi:10.1111/j.1471-4159.2011.07355.x

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci U S A 99(4):2356–2361. doi:10.1073/pnas.261709299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh S, Mishra A, Shukla S (2015) ALCAR exerts neuroprotective and pro-neurogenic effects by inhibition of glial activation and oxidative stress via activation of the Wnt/beta-catenin signaling in parkinsonian rats. Mol Neurobiol. doi:10.1007/s12035-015-9361-5

    Google Scholar 

  42. Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-Hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281(9):5373–5382. doi:10.1074/jbc.M511560200

    Article  CAS  PubMed  Google Scholar 

  43. Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson’s disease: an update. Journal of Parkinson’s disease 1(1):19–33. doi:10.3233/JPD-2011-11023

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Abdul HM, Calabrese V, Calvani M, Butterfield DA (2006) Acetyl-l-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. J Neurosci Res 84(2):398–408. doi:10.1002/jnr.20877

    Article  CAS  PubMed  Google Scholar 

  45. Zhang R, Zhang H, Zhang Z, Wang T, Niu J, Cui D, Xu S (2012) Neuroprotective effects of pre-treatment with l-carnitine and acetyl-L-carnitine on ischemic injury in vivo and in vitro. Int J Mol Sci 13(2):2078–2090. doi:10.3390/ijms13022078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wei L, Ding L, Mo MS, Lei M, Zhang L, Chen K, Xu P (2015) Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Translational Neurodegeneration 4:11. doi:10.1186/s40035-015-0033-1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ma Y, Zhan M, OuYang L, Li Y, Chen S, Wu J, Chen J, Luo C et al (2014) The effects of unilateral 6-OHDA lesion in medial forebrain bundle on the motor, cognitive dysfunctions and vulnerability of different striatal interneuron types in rats. Behav Brain Res 266:37–45. doi:10.1016/j.bbr.2014.02.039

    Article  CAS  PubMed  Google Scholar 

  48. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  49. Colado MI, O’Shea E, Granados R, Misra A, Murray TK, Green AR (1997) A study of the neurotoxic effect of MDMA (‘ecstasy’) on 5-HT neurones in the brains of mothers and neonates following administration of the drug during pregnancy. Br J Pharmacol 121(4):827–833. doi:10.1038/sj.bjp.0701201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raghavendra V, Kulkarni SK (2000) Melatonin reversal of DOI-induced hypophagia in rats; possible mechanism by suppressing 5-HT(2A) receptor-mediated activation of HPA axis. Brain Res 860(1–2):112–118

    Article  CAS  PubMed  Google Scholar 

  51. Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 99(3):1604–1609. doi:10.1073/pnas.032539299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A (2008) Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 28(32):8138–8143. doi:10.1523/JNEUROSCI.1006-08.2008

    Article  CAS  PubMed  Google Scholar 

  53. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297

    Article  CAS  PubMed  Google Scholar 

  54. Heuer A, Smith GA, Lelos MJ, Lane EL, Dunnett SB (2012) Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: motor impairments identify extent of dopamine depletion at three different lesion sites. Behav Brain Res 228(1):30–43. doi:10.1016/j.bbr.2011.11.027

    Article  CAS  PubMed  Google Scholar 

  55. Fink JS, Smith GP (1980) Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats. Brain Res 199(2):359–384

    Article  CAS  PubMed  Google Scholar 

  56. Da Cunha C, Angelucci ME, Canteras NS, Wonnacott S, Takahashi RN (2002) The lesion of the rat substantia nigra pars compacta dopaminergic neurons as a model for Parkinson’s disease memory disabilities. Cell Mol Neurobiol 22(3):227–237

    Article  CAS  PubMed  Google Scholar 

  57. Uc EY, McDermott MP, Marder KS, Anderson SW, Litvan I, Como PG, Auinger P, Chou KL et al (2009) Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology 73(18):1469–1477. doi:10.1212/WNL.0b013e3181bf992f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325(5943):1017–1020. doi:10.1126/science.1172545

    Article  CAS  PubMed  Google Scholar 

  59. Gurden H, Tassin JP, Jay TM (1999) Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 94(4):1019–1027

    Article  CAS  PubMed  Google Scholar 

  60. Caprioli A, Markowska AL, Olton DS (1995) Acetyl-l-carnitine: chronic treatment improves spatial acquisition in a new environment in aged rats. J Gerontol A Biol Sci Med Sci 50(4):B232–B236

    Article  CAS  PubMed  Google Scholar 

  61. Yin YY, Liu H, Cong XB, Liu Z, Wang Q, Wang JZ, Zhu LQ (2010) Acetyl-l-carnitine attenuates okadaic acid induced tau hyperphosphorylation and spatial memory impairment in rats. J Alzheimers Dis 19(2):735–746. doi:10.3233/JAD-2010-1272

    Article  CAS  PubMed  Google Scholar 

  62. Tolu P, Masi F, Leggio B, Scheggi S, Tagliamonte A, De Montis MG, Gambarana C (2002) Effects of long-term acetyl-l-carnitine administration in rats: I. Increased dopamine output in mesocorticolimbic areas and protection toward acute stress exposure. Neuropsychopharmacology 27(3):410–420. doi:10.1016/S0893-133X(02)00306-8

    Article  CAS  PubMed  Google Scholar 

  63. Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71(2):515–528

    Article  CAS  PubMed  Google Scholar 

  64. Glickstein SB, Hof PR, Schmauss C (2002) Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits. J Neurosci 22(13):5619–5629

    CAS  PubMed  Google Scholar 

  65. Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18(4):1613–1621

    CAS  PubMed  Google Scholar 

  66. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 11(6):608–621 . doi:10.1016/j.jalz.2014.06.016e607

    Article  PubMed  Google Scholar 

  67. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. doi:10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE, Lee S, Kim CH et al (2008) Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 131(Pt 11):3019–3033. doi:10.1093/brain/awn230

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lana D, Melani A, Pugliese AM, Cipriani S, Nosi D, Pedata F, Giovannini MG (2014) The neuron-astrocyte-microglia triad in a rat model of chronic cerebral hypoperfusion: protective effect of dipyridamole. Front Aging Neurosci 6:322. doi:10.3389/fnagi.2014.00322

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hong ZY, Shi XR, Zhu K, Wu TT, Zhu YZ (2014) SCM-198 inhibits microglial overactivation and attenuates Abeta1-40-induced cognitive impairments in rats via JNK and NF-kappaB pathways. J Neuroinflammation 11:147. doi:10.1186/s12974-014-0147-x

    Article  PubMed  PubMed Central  Google Scholar 

  71. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, Walker Z, Turkheimer FE et al (2013) Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology 38(6):938–949. doi:10.1038/npp.2012.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rump TJ, Abdul Muneer PM, Szlachetka AM, Lamb A, Haorei C, Alikunju S, Xiong H, Keblesh J et al (2010) Acetyl-l-carnitine protects neuronal function from alcohol-induced oxidative damage in the brain. Free Radic Biol Med 49(10):1494–1504. doi:10.1016/j.freeradbiomed.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choi SH, Joe EH, Kim SU, Jin BK (2003) Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J Neurosci 23(13):5877–5886

    CAS  PubMed  Google Scholar 

  74. Bak SW, Choi H, Park HH, Lee KY, Lee YJ, Yoon MY, Koh SH (2015) Neuroprotective effects of acetyl-l-carnitine against oxygen-glucose deprivation-induced neural stem cell death. Mol Neurobiol. doi:10.1007/s12035-015-9563-x

    PubMed  Google Scholar 

  75. Nagayama M, Niwa K, Nagayama T, Ross ME, Iadecola C (1999) The cyclooxygenase-2 inhibitor NS-398 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 19(11):1213–1219. doi:10.1097/00004647-199911000-00005

    Article  CAS  PubMed  Google Scholar 

  76. Smallie T, Ricchetti G, Horwood NJ, Feldmann M, Clark AR, Williams LM (2010) IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. J Exp Med 207(10):2081–2088. doi:10.1084/jem.20100414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J et al (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16(10):851–863. doi:10.1089/neu.1999.16.851

    Article  CAS  PubMed  Google Scholar 

  78. Neniskyte U, Vilalta A, Brown GC (2014) Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett 588(17):2952–2956. doi:10.1016/j.febslet.2014.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24(3):510–520. doi:10.1038/sj.emboj.7600555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jalal FY, Bohlke M, Maher TJ (2010) Acetyl-l-carnitine reduces the infarct size and striatal glutamate outflow following focal cerebral ischemia in rats. Ann N Y Acad Sci 1199:95–104. doi:10.1111/j.1749-6632.2009.05351.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was funded by the Council of Scientific and Industrial Research (CSIR) Network grants miND (BSC0115) to Dr. Shubha Shukla. The authors would like to thank the Director of CSIR-Central Drug Research Institute (CDRI), Lucknow, India, for constant support and direction in the study. Sonu Singh and Akanksha Mishra are supported by a research fellowship from the Indian Council of Medical Research (ICMR) and the CSIR, New Delhi, India, respectively. The CSIR-CDRI communication number of this manuscript is 9387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubha Shukla.

Ethics declarations

All animal protocols were approved (approval no. IAEC/2013/51) by our Institutional Animals Ethics Committee (IAEC) following the guidelines of the Committee for the Purpose of Control and Supervision of Experiment on Animals (CPCSEA), which complies with the international norms of Indian National Science Academy (INSA).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Sonu Singh and Akanksha Mishra contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Mishra, A., Srivastava, N. et al. Acetyl-l-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats. Mol Neurobiol 55, 583–602 (2018). https://doi.org/10.1007/s12035-016-0293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0293-5

Keywords

Navigation