Skip to main content

Advertisement

Log in

Profiling of Signaling Proteins in Penumbra After Focal Photothrombotic Infarct in the Rat Brain Cortex

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In ischemic stroke, cell damage propagates from infarct core to surrounding tissue. To reveal proteins involved in neurodegeneration and neuroprotection, we explored the protein profile in penumbra surrounding the photothrombotic infarct core induced in rat cerebral cortex by local laser irradiation after Bengal Rose administration. Using antibody microarrays, we studied changes in expression of 224 signaling proteins 1, 4, or 24 h after photothrombotic infarct compared with untreated contralateral cortex. Changes in protein expression were greatest at 4 h after photothrombotic impact. These included over-expression of proteins initiating, regulating, or executing various apoptosis stages (caspases, SMAC/DIABLO, Bcl-10, phosphatidylserine receptor (PSR), prostate apoptosis response 4 (Par4), E2F1, p75, p38, JNK, p53, growth arrest and DNA damage inducible protein 153 (GADD153), glutamate decarboxylases (GAD65/67), NMDAR2a, c-myc) and antiapoptotic proteins (Bcl-x, p63, MDM2, p21WAF-1, ERK1/2, ERK5, MAP kinase-activated protein kinase-2 (MAKAPK2), PKCα, PKCβ, PKCμ, RAF1, protein phosphatases 1α and MAP kinase phosphatase-1 (MKP-1), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), estrogen and EGF receptors, calmodulin, CaMKIIα, CaMKIV, amyloid precursor protein (APP), nicastrin). Phospholipase Cγ1, S-100, and S-100β were down-regulated. Bidirectional changes in levels of adhesion and cytoskeleton proteins were related to destruction and/or remodeling of penumbra. Following proteins regulating actin cytoskeleton were over-expressed: cofilin, actopaxin, p120CTN, α-catenin, p35, myosin Va, and pFAK were up-regulated, whereas ezrin, tropomyosin, spectrin (α + β), βIV-tubulin and polyglutamated β-tubulin, and cytokeratins 7 and 19 were down-regulated. Down-regulation of syntaxin, AP2β/γ, and adaptin β1/2 indicated impairment of vesicular transport and synaptic processes. Down-regulation of cyclin-dependent kinase 6 (Cdk6), cell division cycle 7-related protein kinase (Cdc7 kinase), telomeric repeat-binding factor 1 (Trf1), and topoisomerase-1 showed proliferation suppression. Cytoprotection proteins AOP-1 and chaperons Hsp70 and Hsp90 were down-regulated. These data provide the integral view on penumbra response to photothrombotic infarct. Some of these proteins may be potential targets for antistroke therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368. doi:10.1038/nn.2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meisel A, Prass K, Wolf T, Dirnagl U (2004) Stroke. In: Bähr M (ed) Neuroprotection: models, mechanisms and therapies. Wiley, New York, pp. 9–43

    Google Scholar 

  3. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389. doi:10.1016/j.neuropharm.2007.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66

    Article  CAS  PubMed  Google Scholar 

  5. Puyal J, Ginet V, Clarke PG (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 105:24–48. doi:10.1016/j.pneurobio.2013.03.002

    Article  PubMed  Google Scholar 

  6. Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J (2011) Proteomic analysis of PKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 117:346–356. doi:10.1111/j.1471-4159.2011.07209.x

    Article  CAS  PubMed  Google Scholar 

  7. Datta A, Park JE, Li X, Zhang H, Ho ZS, Heese K, Lim SK, Tam JP et al (2010) Phenotyping of an in vitro model of ischemic penumbra by iTRAQ-based shotgun quantitative proteomics. J Proteome Res 9:472–484. doi:10.1021/pr900829h

    Article  CAS  PubMed  Google Scholar 

  8. Dayon L, Turck N, Garcí-Berrocoso T, Walter N, Burkhard PR, Vilalta A, Sahuquillo J, Montaner J et al (2011) Brain extracellular fluid protein changes in acute stroke patients. J Proteome Res 10:1043–1051. doi:10.1021/pr101123t

    Article  CAS  PubMed  Google Scholar 

  9. Demyanenko SV, Panchenko SN, Uzdensky AB (2015) Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochem Mosc 80:790–799. doi:10.1134/S0006297915060152

    Article  CAS  Google Scholar 

  10. Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A (2016) Photothrombotic infarct in the rat brain cortex: protein profile and morphological changes in penumbra. Mol Neurobiol 53:1–17. doi:10.1007/s12035-016-9964-5

    Article  Google Scholar 

  11. Villa RF, Gorini A, Ferrari F, Hoyer S (2013) Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes. Neurochem Int 63:765–781. doi:10.1016/j.neuint.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  12. Uzdensky AB (2010) Cellular and molecular mechanisms of photodynamic therapy. Nauka, Sankt Petersburg in Russian

    Google Scholar 

  13. Dietrich WD, Watson BD, Busto R, Ginsberg MD, Bethea JR (1987) Photochemically induced cerebral infarction. I. Early microvascular alterations. Acta Neuropathol 72:315–325

    Article  CAS  PubMed  Google Scholar 

  14. Pevsner PH, Eichenbaum JW, Miller DC, Pivawer G, Eichenbaum KD, Stern A, Zakian KL, Koutcher JA (2001) A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. J Pharmacol Toxicol Methods 45:227–233

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt A, Hoppen M, Strecker JK, Diederich K, Schäbitz WR, Schilling M, Minnerup J (2012) Photochemically induced ischemic stroke in rats. Exp Transl Stroke Med 4:13. doi:10.1186/2040-7378-4-13

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shanina EV, Redecker C, Reinecke S, Schallert T, Witte OW (2005) Long-term effects of sequential cortical infarcts on scar size, brain volume and cognitive function. Behav Brain Res 158:69–77

    Article  PubMed  Google Scholar 

  17. Engelmann D, Pützer BM (2010) Translating DNA damage into cancer cell death—a roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance. Drug Resist Updat 13:119–131. doi:10.1016/j.drup.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  18. Udayakumar T, Shareef MM, Diaz DA, Ahmed MM, Pollack A (2010) The E2F1/Rb and p53/MDM2 pathways in DNA repair and apoptosis: understanding the crosstalk to develop novel strategies for prostate cancer radiotherapy. Semin Radiat Oncol 20:258–266. doi:10.1016/j.semradonc.2010.05.007

    Article  PubMed  Google Scholar 

  19. Meng P, Ghosh R (2014) Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis 5:e1360. doi:10.1038/cddis.2014.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bretones G, Delgado MD, León J (2015) Myc and cell cycle control. Biochim Biophys Acta 1849:506–516. doi:10.1016/j.bbagrm.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  21. Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50:93–103

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Chopp M, Zhang ZG, Zaloga C, Niewenhuis L, Gautam S (1994) p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25:849–855

    Article  CAS  PubMed  Google Scholar 

  23. Prunell GF, Arboleda VA, Troy CM (2005) Caspase function in neuronal death: delineation of the role of caspases in ischemia. Curr Drug Targets CNS Neurol Disord 4:51–61

    Article  CAS  PubMed  Google Scholar 

  24. Camins A, Verdaguer E, Folch J, Beas-Zarate C, Canudas AM, Pallàs M (2007) Inhibition of ataxia telangiectasia-p53-E2F-1 pathway in neurons as a target for the prevention of neuronal apoptosis. Curr Drug Metab 8:709–715

    Article  CAS  PubMed  Google Scholar 

  25. MacLachlan TK, El-Deiry WS (2002) Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci U S A 99:9492–9497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tu Y, Hou ST, Huang Z, Robertson GS, MacManus JP (1998) Increased Mdm2 expression in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 18:658–669

    Article  CAS  PubMed  Google Scholar 

  27. Cox LS (1997) Multiple pathways control cell growth and transformation: overlapping and independent activities of p53 and p21Cip1/WAF1/Sdi1. J Pathol 183:134–140

    Article  CAS  PubMed  Google Scholar 

  28. Cmielová J, Rezáčová M (2011) p21Cip1/Waf1 protein and its function based on a subcellular localization. J Cell Biochem 112:3502–3506. doi:10.1002/jcb.23296

    Article  PubMed  Google Scholar 

  29. van Lookeren CM, Gill R (1998) Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 53:279–296

    Article  Google Scholar 

  30. Bui T, Sequeira J, Wen TC, Sola A, Higashi Y, Kondoh H, Genetta T (2009) ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS One 4:e4373. doi:10.1371/journal.pone.0004373

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fatt MP, Cancino GI, Miller FD, Kaplan DR (2014) p63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells. Cell Death Differ 21:1546–1559. doi:10.1038/cdd.2014.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35. doi:10.1016/j.cell.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGahan L, Hakim AM, Robertson GS (1998) Hippocampal Myc and p53 expression following transient global ischemia. Brain Res Mol Brain Res 56:133–145

    Article  CAS  PubMed  Google Scholar 

  34. Ferrer I, Friguls B, Dalfó E, Planas AM (2003) Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 105:425–437

    CAS  PubMed  Google Scholar 

  35. Onoue S, Kumon Y, Igase K, Ohnishi T, Sakanaka M (2005) Growth arrest and DNA damage-inducible gene 153 increases transiently in the thalamus following focal cerebral infarction. Brain Res Mol Brain Res 134:189–197

    Article  CAS  PubMed  Google Scholar 

  36. Gao Y, Signore AP, Yin W, Cao G, Yin X, Sun F, Luo Y, Graham SH et al (2005) Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 25:694–712

    Article  CAS  PubMed  Google Scholar 

  37. Hou ST, Xie X, Baggley A, Park DS, Chen G, Walker T (2002) Activation of the Rb/E2F1 pathway by the nonproliferative p38 MAPK during Fas (APO1/CD95)-mediated neuronal apoptosis. J Biol Chem 277:48764–48770

    Article  CAS  PubMed  Google Scholar 

  38. Piao CS, Kim SW, Kim JB, Lee JK (2005) Co-induction of alphaB-crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia. Exp Brain Res 163:421–429

    Article  CAS  PubMed  Google Scholar 

  39. Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233

    Article  CAS  PubMed  Google Scholar 

  40. Angelo MF, Aviles-Reyes RX, Villarreal A, Barker P, Reines AG, Ramos AJ (2009) p75 NTR expression is induced in isolated neurons of the penumbra after ischemia by cortical devascularization. J Neurosci Res 87:1892–1903. doi:10.1002/jnr.21993

    Article  CAS  PubMed  Google Scholar 

  41. Culmsee C, Zhu Y, Krieglstein J, Mattson MP (2001) Evidence for the involvement of Par-4 in ischemic neuron cell death. J Cereb Blood Flow Metab 21:334–343

    Article  CAS  PubMed  Google Scholar 

  42. Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3:269–283

    Article  CAS  PubMed  Google Scholar 

  43. Neher JJ, Emmrich JV, Fricker M, Mander PK, Théry C, Brown GC (2013) Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci U S A 110:E4098–E4107. doi:10.1073/pnas.1308679110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suk K (2005) Role of caspases in activation-induced cell death of neuroglial. Curr Enzyme Inhibition 1:43–50

    Article  CAS  Google Scholar 

  45. Kim SJ, Zhang Z, Hitomi E, Lee YC, Mukherjee AB (2006) Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 15:1826–1834

    Article  CAS  PubMed  Google Scholar 

  46. Zhou X, Ding Q, Chen Z, Yun H, Wang H (2013) Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem 288:24151–24159. doi:10.1074/jbc.M113.482000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaenisch N, Popp A, Guenther M, Schnabel J, Witte OW, Frahm C (2014) Pro-apoptotic function of GABA-related transcripts following stroke. Neurobiol Dis 70:237–244. doi:10.1016/j.nbd.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  48. Kitagawa H, Warita H, Sasaki C, Zhang WR, Sakai K, Shiro Y, Mitsumoto Y, Mori T et al (1999) Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett 274:45–48

    Article  CAS  PubMed  Google Scholar 

  49. Su C, Sun F, Cunningham RL, Rybalchenko N, Singh M (2014) ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age (Dordr) 36:9685. doi:10.1007/s11357-014-9685-5

    Article  Google Scholar 

  50. Wu HW, Li HF, Wu XY, Zhao J, Guo J (2008) Reactive oxygen species mediate ERK activation through different Raf-1-dependent signaling pathways following cerebral ischemia. Neurosci Lett 432:83–87. doi:10.1016/j.neulet.2007.11.073

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L (2015) Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro 7 . doi:10.1177/1759091415602463pii: 1759091415602463

  52. Bright R (2005) The role of protein kinase C in cerebral ischemic stroke. Stroke 36:2781–2790

    Article  CAS  PubMed  Google Scholar 

  53. Fleegal MA, Hom S, Borg LK, Davis TP (2005) Activation of PKC modulates blood-brain barrier endothelial cell permeability changes induced by hypoxia and posthypoxic reoxygenation. Am J Physiol Heart Circ Physiol 289:H2012–H2019

    Article  CAS  PubMed  Google Scholar 

  54. Stetler RA, Gao Y, Zhang L, Weng Z, Zhang F, Hu X, Wang S, Vosler P et al (2012) Phosphorylation of HSP27 by protein kinase D is essential for mediating neuroprotection against ischemic neuronal injury. J Neurosci 32:2667–2682. doi:10.1523/JNEUROSCI.5169-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koga S, Kojima S, Kishimoto T, Kuwabara S, Yamaguchi A (2012) Over-expression of map kinase phosphatase-1 (MKP-1) suppresses neuronal death through regulating JNK signaling in hypoxia/re-oxygenation. Brain Res 1436:137–146. doi:10.1016/j.brainres.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  56. Liu L, Doran S, Xu Y, Manwani B, Ritzel R, Benashski S, McCullough L, Li J (2014) Inhibition of mitogen-activated protein kinase phosphatase-1 (MKP-1) increases experimental stroke injury. Exp Neurol 261:404–411. doi:10.1016/j.expneurol.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  57. Hurn PD, Macrae IM (2000) Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab 20:631–652

    Article  CAS  PubMed  Google Scholar 

  58. Nishida Y, Nagata T, Takahashi Y, Sugahara-Kobayashi M, Murata A, Asai S (2004) Alteration of serum/glucocorticoid regulated kinase-1 (sgk-1) gene expression in rat hippocampus after transient global ischemia. Brain Res Mol Brain Res 123:121–125

    Article  CAS  PubMed  Google Scholar 

  59. Schoenebeck B, Bader V, Zhu XR, Schmitz B, Lübbert H, Stichel CC (2005) Sgk1, a cell survival response in neurodegenerative diseases. Mol Cell Neurosci 30:249–264

    Article  CAS  PubMed  Google Scholar 

  60. Uzdenskii AB, Kolosov MS, Lobanov AV (2008) Neuron and gliocyte death induced by photodynamic treatment: signal processes and neuron-glial interactions. Neurosci Behav Physiol 38:727–735. doi:10.1007/s11055-008-9042-1

    Article  CAS  PubMed  Google Scholar 

  61. Matrone C, Marolda R, Ciafrè S, Ciotti MT, Mercanti D, Calissano P (2009) Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. Proc Natl Acad Sci U S A 106:11358–11363. doi:10.1073/pnas.0904998106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coultrap SJ, Vest RS, Ashpole NM, Hudmon A, Bayer KU (2011) CaMKII in cerebral ischemia. Acta Pharmacol Sin 32:861–872. doi:10.1038/aps.2011.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bell KF, Bent RJ, Meese-Tamuri S, Ali A, Forder JP, Aarts MM (2013) Calmodulin kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption. J Neurochem 126:274–287. doi:10.1111/jnc.12176

    Article  CAS  PubMed  Google Scholar 

  64. Mesaeli N, Phillipson C (2004) Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol Biol Cell 15:1862–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen B, Wu Z, Xu J, Xu Y (2015) Calreticulin binds to Fas ligand and inhibits neuronal cell apoptosis induced by ischemia-reperfusion injury. Biomed Res Int 2015:895284. doi:10.1155/2015/895284

    PubMed  PubMed Central  Google Scholar 

  66. Korfias S, Stranjalis G, Papadimitriou A, Psachoulia C, Daskalakis G, Antsaklis A, Sakas DE (2006) Serum S-100B protein as a biochemical marker of brain injury: a review of current concepts. Curr Med Chem 13:3719–3731

    Article  CAS  PubMed  Google Scholar 

  67. Kumar H, Lakhotia M, Pahadiya H, Singh J (2015) To study the correlation of serum S-100 protein level with the severity of stroke and its prognostic implication. J Neurosci Rural Pract 6:326–330. doi:10.4103/0976-3147.158751

    Article  PubMed  PubMed Central  Google Scholar 

  68. Szpak GM, Lechowicz W, Lewandowska E, Bertrand E, Wierzba-Bobrowicz T, Dymecki J (1999) Border zone neovascularization in cerebral ischemic infarct. Folia Neuropathol 37:264–268

    CAS  PubMed  Google Scholar 

  69. Barreto GE, Sun X, Xu L, Giffard RG (2011) Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 6:e27881. doi:10.1371/journal.pone.0027881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y et al (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A 103:13198–13202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nalivaeva NN, Turner AJ (2013) The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 587:2046–2054. doi:10.1016/j.febslet.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  72. Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M, Jolkkonen J (2007) Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci 26:1845–1852

    Article  PubMed  Google Scholar 

  73. Posada-Duque RA, Barreto GE, Cardona-Gomez GP (2014) Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8:231. doi:10.3389/fncel.2014.00231

    Article  PubMed  PubMed Central  Google Scholar 

  74. Clarke DM, Brown MC, LaLonde DP, Turner CE (2004) Phosphorylation of actopaxin regulates cell spreading and migration. J Cell Biol 166:901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Madineni A, Alhadidi Q, Shah ZA (2016) Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia. Mol Neurobiol 53:867–878. doi:10.1007/s12035-014-9056-3

    Article  CAS  PubMed  Google Scholar 

  76. Maloney MT, Bamburg JR (2007) Cofilin-mediated neurodegeneration in Alzheimer's disease and other amyloidopathies. Mol Neurobiol 35:21–44

    Article  CAS  PubMed  Google Scholar 

  77. Klamt F, Zdanov S, Levine RL, Pariser A, Zhang Y, Zhang B, Yu LR, Veenstra TD et al (2009) Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nat Cell Biol 11:1241–1246. doi:10.1038/ncb1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun M, Zhao Y, Gu Y, Xu C (2010) Neuroprotective actions of aminoguanidine involve reduced the activation of calpain and caspase-3 in a rat model of stroke. Neurochem Int 56:634–641. doi:10.1016/j.neuint.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  79. Yao H, Ginsberg MD, Eveleth DD, LaManna JC, Watson BD, Alonso OF, Loor JY, Foreman JH et al (1995) Local cerebral glucose utilization and cytoskeletal proteolysis as indices of evolving focal ischemic injury in core and penumbra. J Cereb Blood Flow Metab 15:398–408

    Article  CAS  PubMed  Google Scholar 

  80. Schevzov G, Curthoys NM, Gunning PW, Fath T (2012) Functional diversity of actin cytoskeleton in neurons and its regulation bytropomyosin. Int Rev Cell Mol Biol 298:33–94. doi:10.1016/B978-0-12-394309-5.00002-X

    Article  CAS  PubMed  Google Scholar 

  81. Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T (2009) Post-translational modifications of tubulin in the nervous system. J Neurochem 109:683–693. doi:10.1111/j.1471-4159.2009.06013.x

    Article  CAS  PubMed  Google Scholar 

  82. Shah K, Lahiri DK (2016) A tale of the good and bad: remodeling of the microtubule network in the brain by Cdk5. Mol Neurobiol. doi:10.1007/s12035-016-9792-7

    Google Scholar 

  83. Rudinskiy N, Grishchuk Y, Vaslin A, Puyal J, Delacourte A, Hirling H, Clarke PG, Luthi-Carter R (2009) Calpain hydrolysis of alpha- and beta2-adaptins decreases clathrin-dependent endocytosis and may promote neurodegeneration. J Biol Chem 284:12447–12458. doi:10.1074/jbc.M804740200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Katayama T, Imaizumi K, Tsuda M, Mori Y, Takagi T, Tohyama M (1998) Expression of an ADP-ribosylation factor like gene, ARF4L, is induced after transient forebrain ischemia in the gerbil. Brain Res Mol Brain Res 56:66–75

    Article  CAS  PubMed  Google Scholar 

  85. Xu J, Luo F, Zhang Z, Xue L, Wu XS, Chiang HC, Shin W, Wu LG (2013) SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses. Cell Rep 3:1414–1421. doi:10.1016/j.celrep.2013.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Scudder SL, Patrick GN (2015) Synaptic structure and function are altered by the neddylation inhibitor MLN4924. Mol Cell Neurosci 65:52–57. doi:10.1016/j.mcn.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wong YH, Wu CC, Lai HY, Jheng BR, Weng HY, Chang TH, Chen BS (2015) Identification of network-based biomarkers of cardioembolic stroke using a systems biology approach with time series data. BMC Syst Biol 9(Suppl 6):S4. doi:10.1186/1752-0509-9-S6-S4

    Article  PubMed  PubMed Central  Google Scholar 

  88. Love S (2003) Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry 27:267–282

    Article  CAS  Google Scholar 

  89. Lockshin RA, Zakeri Z (2001) Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2:545–550

    Article  CAS  PubMed  Google Scholar 

  90. Hagenston AM, Bading H (2011) Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 3:a004564. doi:10.1101/cshperspect.a004564

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696. doi:10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shanmughapriya S, Rajan S, Hoffman NE, Zhang X, Guo S, Kolesar JE, Hines KJ, Ragheb J et al (2015) Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci Signal 8:ra23. doi:10.1126/scisignal.2005673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carrión AM, Link WA, Ledo F, Mellström B, Naranjo JR (1999) DREAM is a Ca2 + −regulated transcriptional repressor. Nature 398:80–84

    Article  PubMed  Google Scholar 

  94. Barlow CA, Rose P, Pulver-Kaste RA, Lounsbury KM (2006) Excitation-transcription coupling in smooth muscle. J Physiol 570:59–64

    Article  CAS  PubMed  Google Scholar 

  95. Mellström B, Naranjo JR (2001) Ca2+-dependent transcriptional repression and derepression: DREAM, a direct effector. Semin Cell Dev Biol 12:59–63

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation (grant 14-15-00068). A. Uzdensky’s work was supported by the Ministry of Education and Science of Russian Federation (grant “Science organization” no. 790). The authors used the equipment of the Center for Collective Use of Southern Federal University “High Technology” supported by the Ministry of Education and Science of the Russian Federation (project RFME_FI59414X0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Uzdensky.

Ethics declarations

All experimental procedures were carried out in accordance with the European Union guidelines 86/609/ЕЕС for the use of experimental animals and local legislation for ethics of experiments on animals. The animal protocols were evaluated and approved by the Animal Care and Use Committee of the Southern Federal University (approval no. 02/2014).

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyanenko, S., Uzdensky, A. Profiling of Signaling Proteins in Penumbra After Focal Photothrombotic Infarct in the Rat Brain Cortex. Mol Neurobiol 54, 6839–6856 (2017). https://doi.org/10.1007/s12035-016-0191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0191-x

Keywords

Navigation