Skip to main content

Advertisement

Log in

Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent improvements in organotypic slice culturing and its accompanying technological innovations have made this biological preparation increasingly useful ex vivo experimental model. Among organotypic slice cultures obtained from various central nervous regions, spinal cord slice culture is an absorbing model that represents several unique advantages over other current in vitro and in vivo models. The culture of developing spinal cord slices, as allows real-time observation of embryonic cells behaviors, is an instrumental platform for developmental investigation. Importantly, due to the ability of ex vivo models to recapitulate different aspects of corresponding in vivo conditions, these models have been subject of various manipulations to derive disease-relevant slice models. Moreover spinal cord slice cultures represent a potential platform for screening of different pharmacological agents and evaluation of cell transplantation and neuroregenerative materials. In this review, we will focus on studies carried out using the ex vivo model of spinal cord slice cultures and main advantages linked to practicality of these slices in both normal and neuropathological diseases and summarize them in different categories based on application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

5α-DHP:

5α-Dihydroprogestrone

ALS:

Amyotrophic lateral sclerosis

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

CHOP:

CCAAT-enhancer-binding protein homologous protein

E:

Embryonic day

EGFP:

Enhanced green fluorescent protein

ER:

Endoplasmic reticulum

GABA:

Neurotransmitter gamma-aminobutyric acid

GDNF:

Glial cell line-derived neurotrophic factor

GFRα-1:

GDNF family receptor α-1

GHS-R:

Growth hormone secretagogue receptor

GSK 3β:

Glycogen synthase kinase 3-β

HC-TeTx:

c-Terminal domain of tetanus toxin

HDAC:

Histone deacetylase inhibitor

hMSC:

Human mesenchymal stem cell

IL1RA:

Interleukin-1 receptor antagonist

Li:

Lithium

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MEA:

Microelectrode arrays

MN:

Motoneuron

NEP:

Neuroepithelial progenitor cells

NGF:

Nerve growth factor

NMDA:

N-methyl-d-aspartate

NPC:

Neural progenitor cell

NSC:

Neural stem cell

NT:

Neurotrophin

OEC:

Olfactory ensheating cell

P:

Postnatal day

P4:

Progesterone

PAR:

Poly-ADP-ribose

PARP:

Poly (ADP-ribose) polymerase

PDC:

l-trans pyrrolidine 2, 4-dicarboxylic acid

PFT:

Pifithrin-α

PI3-K:

Phosphatidylinositol 3-kinase

PKA:

Protein kinase A

PLA:

Poly-lactic acid

PM:

Pathological medium

PPAR-δ:

Peroxisome proliferator-activated receptor-delta

PR:

Progesterone receptor

p75NTR :

Low-affinity p75 neurotrophin receptor

SCI:

Spinal cord injury

THA:

Threo-hydroxyaspartate

Tm:

Tunicamycin

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

VEGFR2:

VEGF receptor-2

VPA:

Valproic acid

UPS:

Ubiquitin-proteasome system

References

  1. Gähwiler B (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4(4):329–342

    Article  PubMed  Google Scholar 

  2. Gähwiler B (1984) Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia 40(3):235–243

    Article  PubMed  Google Scholar 

  3. De Simoni A, Lily M (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1(3):1439–1445

    Article  PubMed  CAS  Google Scholar 

  4. Gogolla N, Galimberti I, DePaola V, Caroni P (2006) Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat Protoc 1(3):1165–1171

    Article  CAS  PubMed  Google Scholar 

  5. Davids E, Hevers W, Dämgen K, Zhang K, Tarazi FI, Lüddens H (2002) Organotypic rat cerebellar slice culture as a model to analyze the molecular pharmacology of GABA < sub > A </sub > receptors. Eur Neuropsychopharmacol 12(3):201–208

    Article  CAS  PubMed  Google Scholar 

  6. Okazawa M, Abe H, Katsukawa M, Iijima K, Kiwada T, Nakanishi S (2009) Role of calcineurin signaling in membrane potential-regulated maturation of cerebellar granule cells. J Neurosci 29(9):2938–2947

    Article  CAS  PubMed  Google Scholar 

  7. Letinic K, Rakic P (2001) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4(9):931–936

    Article  CAS  PubMed  Google Scholar 

  8. Cho ES, Lee SY, Park J-Y, Hong S-G, Ryu PD (2007) Organotypic slice culture of the hypothalamic paraventricular nucleus of rat. J Vet Sci 8(1):15–20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ravikumar M, Jain S, Miller RH, Capadona JR, Selkirk SM (2012) An organotypic spinal cord slice culture model to quantify neurodegeneration. J Neurosci Methods 211(2):280–288

    Article  PubMed  Google Scholar 

  10. Cavaliere F, Vicente ES, Matute C (2010) An organotypic culture model to study nigro-striatal degeneration. J Neurosci Methods 188(2):205–212

    Article  PubMed  Google Scholar 

  11. Daviaud N, Garbayo E, Lautram N, Franconi F, Lemaire L, Perez-Pinzon M, Montero-Menei C (2014) Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson’s disease. Neuroscience 256:10–22

    Article  CAS  PubMed  Google Scholar 

  12. Moritoh S, Tanaka KF, Jouhou H, Ikenaka K, Koizumi A (2010) Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. PLoS One 5(9), e12917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Takuma H, Sakurai M, Kanazawa I (2002) < i > In vitro </i > formation of corticospinal synapses in an organotypic slice co-culture. Neuroscience 109(2):359–370

    Article  CAS  PubMed  Google Scholar 

  14. Li D, Field P, Yoshioka N, Raisman G (1994) Axons regenerate with correct specificity in horizontal slice culture of the postnatal rat entorhino‐hippocampal system. Eur J Neurosci 6(6):1026–1037

    Article  CAS  PubMed  Google Scholar 

  15. Bonnici B, Kapfhammer JP (2009) Modulators of signal transduction pathways can promote axonal regeneration in entorhino-hippocampal slice cultures. Eur J Pharmacol 612(1):35–40

    Article  CAS  PubMed  Google Scholar 

  16. del Río JA, Soriano E (2010) Regenerating cortical connections in a dish: the entorhino-hippocampal organotypic slice co-culture as tool for pharmacological screening of molecules promoting axon regeneration. Nat Protoc 5(2):217–226

    Article  PubMed  CAS  Google Scholar 

  17. Braschler U, Iannone A, Spenger C, Streit J, Lüscher H-R (1989) A modified roller tube technique for organotypic cocultures of embryonic rat spinal cord, sensory ganglia and skeletal muscle. J Neurosci Methods 29(2):121–129

    Article  CAS  PubMed  Google Scholar 

  18. Stavridis SI, Dehghani F, Korf H-W, Hailer NP (2009) Cocultures of rat sensorimotor cortex and spinal cord slices to investigate corticospinal tract sprouting. Spine 34(23):2494–2499

    Article  PubMed  Google Scholar 

  19. Magloire V, Streit J (2009) Intrinsic activity and positive feedback in motor circuits in organotypic spinal cord slice cultures. Eur J Neurosci 30(8):1487–1497

    Article  PubMed  Google Scholar 

  20. Loffredo Sampaolo C (1956) Chick embryo heart in organotypic culture. Boll Soc Ital Biol Sper 32(12):1580–1582

    CAS  PubMed  Google Scholar 

  21. Gähwiler B, Capogna M, Debanne D, McKinney R, Thompson S (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20(10):471–477

    Article  PubMed  Google Scholar 

  22. Stoppini L, Buchs P-A, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182

    Article  CAS  PubMed  Google Scholar 

  23. Lossi L, Alasia S, Salio C, Merighi A (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88(4):221–245

    Article  PubMed  Google Scholar 

  24. Cho S, Wood A, Bowlby MR (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN (2013) Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 248:429–440

    Article  PubMed  Google Scholar 

  26. Lachance-Touchette P, Choudhury M, Stoica A, Di Cristo G, Cossette P (2014) Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner. Front Cell Neurosci 8

  27. Bier E, McGinnis W (2004) Model organisms in the study of development and disease

  28. Fuller L, Dailey ME (2007) Preparation of rodent hippocampal slice cultures. Cold Spring Harb Protoc 2007(10):pdb. prot4848

    Article  Google Scholar 

  29. Gertz CC, Lui JH, LaMonica BE, Wang X, Kriegstein AR (2014) Diverse behaviors of outer radial glia in developing ferret and human cortex. J Neurosci 34(7):2559–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ballerini L, Galante M (1998) Network bursting by organotypic spinal slice cultures in the presence of bicuculline and/or strychnine is developmentally regulated. Eur J Neurosci 10(9):2871–2879

    Article  CAS  PubMed  Google Scholar 

  31. Avossa D, Rosato-Siri MD, Mazzarol F, Ballerini L (2003) Spinal circuits formation: a study of developmentally regulated markers in organotypic cultures of embryonic mouse spinal cord. Neuroscience 122(2):391–405

    Article  CAS  PubMed  Google Scholar 

  32. Oppenheim RW (1986) The absence of significant postnatal motoneuron death in the brachial and lumbar spinal cord of the rat. J Comp Neurol 246(2):281–286

    Article  CAS  PubMed  Google Scholar 

  33. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14(1):453–501

    Article  CAS  PubMed  Google Scholar 

  34. Lewin GR, Barde Y-A (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19(1):289–317

    Article  CAS  PubMed  Google Scholar 

  35. Sedel F, Béchade C, Triller A (1999) Nerve growth factor (NGF) induces motoneuron apoptosis in rat embryonic spinal cord in vitro. Eur J Neurosci 11(11):3904–3912

    Article  CAS  PubMed  Google Scholar 

  36. Cooper JA (2013) Mechanisms of cell migration in the nervous system. J Cell Biol 202(5):725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wetts R, Vaughn J (2000) Manipulation of intracellular calcium has no effect on rate of migration of rat autonomic motor neurons in organotypic slice cultures. Neuroscience 98(2):369–376

    Article  CAS  PubMed  Google Scholar 

  38. Sobkowicz HM, Waclawik AJ, August BK (2006) The astroglial cell that guides nerve fibers from growth cone to synapse in organotypic cultures of the fetal mouse spinal cord. Synapse 59(4):183–200

    Article  CAS  PubMed  Google Scholar 

  39. Brachmann I, Jakubick VC, Shaked M, Unsicker K, Tucker KL (2007) A simple slice culture system for the imaging of nerve development in embryonic mouse. Dev Dyn 236(12):3514–3523

    Article  PubMed  Google Scholar 

  40. O'Leary CJ, McDermott KW (2011) Spinal cord neuroepithelial progenitor cells display developmental plasticity when co‐cultured with embryonic spinal cord slices at different stages of development. Dev Dyn 240(4):785–795

    Article  Google Scholar 

  41. Pakan JM, McDermott KW (2014) A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Front Neuroanat 8

  42. Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16(11):1210–1214

    Article  CAS  PubMed  Google Scholar 

  43. Krassioukov AV, Ackery A, Schwartz G, Adamchik Y, Liu Y, Fehlings MG (2002) An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain Res Protocol 10(2):60–68. doi:10.1016/S1385-299X(02)00180-0

    Article  Google Scholar 

  44. Dunham KA, Floyd CL (2011) Contusion models of spinal cord injury in rats. In: Animal models of movement disorders. Springer, pp 345–362

  45. Balentine J, Greene W, Bornstein M (1988) In vitro spinal cord trauma. Lab Investig 58(1):93–99

    CAS  PubMed  Google Scholar 

  46. Esposito E, Paterniti I, Meli R, Bramanti P, Cuzzocrea S (2012) GW0742, a high-affinity PPAR-δ agonist, mediates protection in an organotypic model of spinal cord damage. Spine 37(2):E73–E78

    Article  PubMed  Google Scholar 

  47. Labombarda F, Ghoumari AM, Liere P, De Nicola AF, Schumacher M, Guennoun R (2013) Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: a key role for progesterone receptors and steroidal modulators of GABA < sub > A </sub > receptors. Neuropharmacology 71:46–55

    Article  CAS  PubMed  Google Scholar 

  48. Avila J, Lucas JJ, Hernandez F, Martinez A (2011) Animal models for neurodegenerative disease. R Soc Chem 6

  49. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81(3):163–221

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz G, Fehlings MG (2002) Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 137:177–190

    Article  CAS  PubMed  Google Scholar 

  51. Borgens RB, Liu-Snyder P (2012) Understanding secondary injury. Q Rev Biol 87(2):89–127

    Article  PubMed  Google Scholar 

  52. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5(4):407–413

    Article  CAS  PubMed  Google Scholar 

  53. Margaryan G, Mladinic M, Mattioli C, Nistri A (2009) Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord < i > in vitro</i> Neuroscience 163(2):669–682

    Article  CAS  PubMed  Google Scholar 

  54. Margaryan G, Mattioli C, Mladinic M, Nistri A (2010) Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord < i > in vitro</i> Neuroscience 165(3):996–1010

    Article  CAS  PubMed  Google Scholar 

  55. Taccola G, Mladinic M, Nistri A (2010) Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury. Eur J Neurosci 31(1):60–78

    Article  PubMed  Google Scholar 

  56. Gerardo-Nava J, Mayorenko II, Grehl T, Steinbusch HW, Weis J, Brook GA (2013) Differential pattern of neuroprotection in lumbar, cervical and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity. J Chem Neuroanat 53:11–17

    Article  CAS  PubMed  Google Scholar 

  57. Taccola G, Margaryan G, Mladinic M, Nistri A (2008) Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the < i > in vitro</i > neonatal rat spinal cord. Neuroscience 155(2):538–555

    Article  CAS  PubMed  Google Scholar 

  58. Mazzone GL, Margaryan G, Kuzhandaivel A, Nasrabady SE, Mladinic M, Nistri A (2010) Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the < i > in vitro</i > spinal cord. Neuroscience 168(2):451–462

    Article  CAS  PubMed  Google Scholar 

  59. Mazzone GL, Nistri A (2011) Electrochemical detection of endogenous glutamate release from rat spinal cord organotypic slices as a real-time method to monitor excitotoxicity. J Neurosci Methods 197(1):128–132

    Article  CAS  PubMed  Google Scholar 

  60. Mazzone GL, Mladinic M, Nistri A (2013) Excitotoxic cell death induces delayed proliferation of endogenous neuroprogenitor cells in organotypic slice cultures of the rat spinal cord. Cell Death Dis 4, e902. doi:10.1038/cddis.2013.431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mazzone GL, Nistri A (2014) S100β as an early biomarker of excitotoxic damage in spinal cord organotypic cultures. Journal of neurochemistry

  62. Mazzone GL, Nistri A (2014) S100β as an early biomarker of excitotoxic damage in spinal cord organotypic cultures. J Neurochem 130(4):598–604

    Article  CAS  PubMed  Google Scholar 

  63. Kosuge Y, Sekikawa-Nishida K, Negi H, Ishige K, Ito Y (2009) Characterization of chronic glutamate-mediated motor neuron toxicity in organotypic spinal cord culture prepared from ALS model mice. Neurosci Lett 454(2):165–169

    Article  CAS  PubMed  Google Scholar 

  64. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40(2):427–446

    Article  CAS  PubMed  Google Scholar 

  65. Tsuji S, Kikuchi S, Shinpo K, Tashiro J, Kishimoto R, Yabe I, Yamagishi S, Takeuchi M et al (2005) Proteasome inhibition induces selective motor neuron death in organotypic slice cultures. J Neurosci Res 82(4):443–451

    Article  CAS  PubMed  Google Scholar 

  66. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marsh DR, Dekaban GA, Tan W, Strathdee CA, Weaver LC (2000) Herpes simplex viral and amplicon vector-mediated gene transfer into glia and neurons in organotypic spinal cord and dorsal root ganglion cultures. Mol Ther 1(5):464–478

    Article  CAS  PubMed  Google Scholar 

  68. Hilton KJ, Bateson AN, King AE (2004) A model of organotypic rat spinal slice culture and biolistic transfection to elucidate factors that drive the preprotachykinin-A promoter. Brain Res Rev 46(2):191–203

    Article  CAS  PubMed  Google Scholar 

  69. Hilton KJ, Bateson AN, King AE (2006) Neurotrophin‐induced preprotachykinin‐A gene promoter modulation in organotypic rat spinal cord culture. J Neurochem 98(3):690–699

    Article  CAS  PubMed  Google Scholar 

  70. Avossa D, Grandolfo M, Mazzarol F, Zatta M, Ballerini L (2006) Early signs of motoneuron vulnerability in a disease model system: characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 138(4):1179–1194

    Article  CAS  PubMed  Google Scholar 

  71. Vyas A, Li Z, Aspalter M, Feiner J, Hoke A, Zhou C, O'Daly A, Abdullah M et al (2010) An in vitro model of adult mammalian nerve repair. Exp Neurol 223(1):112–118. doi:10.1016/j.expneurol.2009.05.022

    Article  CAS  PubMed  Google Scholar 

  72. Yin HZ, Weiss JH (2012) Marked synergism between mutant SOD1 and glutamate transport inhibition in the induction of motor neuronal degeneration in spinal cord slice cultures. Brain Res 1448:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Merrill JE (2008) In vitro and in vivo pharmacological models to assess demyelination and remyelination. Neuropsychopharmacology 34(1):55–73

    Article  PubMed  CAS  Google Scholar 

  74. Sundstrom L, Pringle A, Morrison B, Bradley M (2005) Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today 10(14):993–1000

    Article  CAS  PubMed  Google Scholar 

  75. Zhang D, Luo G, Ding X, Lu C (2012) Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B 2(6):549–561

    Article  Google Scholar 

  76. Allen DD, Caviedes R, Cárdenas AM, Shimahara T, Segura-Aguilar J, Caviedes PA (2005) Cell lines as in vitro models for drug screening and toxicity studies. Drug Dev Ind Pharm 31(8):757–768

    Article  CAS  PubMed  Google Scholar 

  77. Gomez-Lechon M, Donato M, Lahoz A, Castell J (2008) Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab 9(1):1–11

    Article  PubMed  Google Scholar 

  78. Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A et al (2010) Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci 107(18):8352–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sugai F, Yamamoto Y, Miyaguchi K, Zhou Z, Sumi H, Hamasaki T, Goto M, Sakoda S (2004) Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci 20(11):3179–3183

    Article  PubMed  Google Scholar 

  80. Penas C, Verdú E, Asensio-Pinilla E, Guzmán-Lenis M, Herrando-Grabulosa M, Navarro X, Casas C (2011) Valproate reduces CHOP levels and preserves oligodendrocytes and axons after spinal cord injury. Neuroscience 178:33–44

    Article  CAS  PubMed  Google Scholar 

  81. Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S et al (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120(9):3255–3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lv L, Han X, Sun Y, Wang X, Dong Q (2012) Valproic acid improves locomotion < i > in vivo</i > after SCI and axonal growth of neurons < i > in vitro</i> Exp Neurol 233(2):783–790

    Article  CAS  PubMed  Google Scholar 

  83. Lee JY, Maeng S, Kang SR, Choi HY, Oh TH, Ju BG, Yune TY (2014) Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury. J Neurotrauma 31(6):582–594

    Article  PubMed  PubMed Central  Google Scholar 

  84. Su Z, Niu W, Liu M-L, Zou Y, Zhang C-L (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5

  85. Chu T, Zhou H, Lu L, Kong X, Wang T, Pan B, Feng S (2014) Valproic acid-mediated neuroprotection and neurogenesis after spinal cord injury: from mechanism to clinical potential. Regen Med 0:1–16

    Google Scholar 

  86. Paterniti I, Esposito E, Mazzon E, Galuppo M, Di Paola R, Bramanti P, Kapoor A, Thiemermann C et al (2010) Evidence for the role of peroxisome proliferator-activated receptor-β/δ in the development of spinal cord injury. J Pharmacol Exp Ther 333(2):465–477

    Article  CAS  PubMed  Google Scholar 

  87. Nonaka S, Hough CJ, Chuang D-M (1998) Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci 95(5):2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chalecka-Franaszek E, Chuang D-M (1999) Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci 96(15):8745–8750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chuang DM, Chen RW, Chalecka‐Franaszek E, Ren M, Hashimoto R, Senatorov V, Kanai H, Hough C et al (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord 4(2):129–136

    Article  CAS  PubMed  Google Scholar 

  90. Wei H, Qin Z-H, Senatorov V, Wei W, Wang Y, Qian Y, Chuang D-M (2001) Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington’s disease. Neuroscience 106(3):603–612

    Article  CAS  PubMed  Google Scholar 

  91. Wada A, Yokoo H, Yanagita T, Kobayashi H (2005) Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 99(4):307–321

    Article  CAS  PubMed  Google Scholar 

  92. Fornai F, Longone P, Ferrucci M, Lenzi P, Isidoro C, Ruggieri S, Paparelli A (2008) Autophagy and amyotrophic lateral sclerosis. Autophagy 4(4):527–530

    Article  CAS  PubMed  Google Scholar 

  93. Caldero J, Brunet N, Tarabal O, Piedrafita L, Hereu M, Ayala V, Esquerda J (2010) Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience 165(4):1353–1369

    Article  CAS  PubMed  Google Scholar 

  94. Yang M, Li J, So K, Chen J, Cheng W, Wu J, Wang Z, Gao F et al (2011) Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: a double-blind, randomized, placebo-controlled clinical trial. Spinal Cord 50(2):141–146

    Article  PubMed  Google Scholar 

  95. Guzmán-Lenis M-S, Navarro X, Casas C (2009) Drug screening of neuroprotective agents on an organotypic-based model of spinal cord excitotoxic damage. Restor Neurol Neurosci 27(4):335–349

    PubMed  Google Scholar 

  96. Noh K-M, Hwang J-Y, Shin H-C, Koh J-Y (2000) A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis 7(4):375–383

    Article  CAS  PubMed  Google Scholar 

  97. Katoh-Semba R, Asano T, Ueda H, Morishita R, Takeuchi IK, Inaguma Y, Kato K (2002) Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J 16(10):1328–1330

    CAS  PubMed  Google Scholar 

  98. Fumagalli E, Bigini P, Barbera S, De Paola M, Mennini T (2006) Riluzole, unlike the AMPA antagonist RPR119990, reduces motor impairment and partially prevents motoneuron death in the wobbler mouse, a model of neurodegenerative disease. Exp Neurol 198(1):114–128

    Article  CAS  PubMed  Google Scholar 

  99. Mazzone GL, Nistri A (2011) Delayed neuroprotection by riluzole against excitotoxic damage evoked by kainate on rat organotypic spinal cord cultures. Neuroscience 190:318–327

    Article  CAS  PubMed  Google Scholar 

  100. Mazzone GL, Nistri A (2011) Effect of the PARP-1 inhibitor PJ 34 on excitotoxic damage evoked by kainate on rat spinal cord organotypic slices. Cell Mol Neurobiol 31(3):469–478

    Article  CAS  PubMed  Google Scholar 

  101. Nasrabady SE, Kuzhandaivel A, Nistri A (2011) Studies of locomotor network neuroprotection by the selective poly (ADP‐ribose) polymerase‐1 inhibitor PJ‐34 against excitotoxic injury to the rat spinal cord in vitro. Eur J Neurosci 33(12):2216–2227

    Article  PubMed  Google Scholar 

  102. Kanda T, Kurokawa M, Tamura S, Nakamura J, Ishii A, Kuwana Y, Serikawa T, Yamada J et al (1996) Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats (SER). Life Sci 59(19):1607–1616

    Article  CAS  PubMed  Google Scholar 

  103. Maragakis NJ, Jackson M, Ganel R, Rothstein JD (2003) Topiramate protects against motor neuron degeneration in organotypic spinal cord cultures but not in G93A SOD1 transgenic mice. Neurosci Lett 338(2):107–110

    Article  CAS  PubMed  Google Scholar 

  104. Cudkowicz M, Shefner J, Schoenfeld D, Brown R Jr, Johnson H, Qureshi M, Jacobs M, Rothstein J et al (2003) A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology 61(4):456–464

    Article  CAS  PubMed  Google Scholar 

  105. Schizas N, Andersson B, Hilborn J, Hailer NP (2014) Interleukin-1 receptor antagonist promotes survival of ventral horn neurons and suppresses microglial activation in mouse spinal cord slice cultures. J Neurosci Res 92(11):1457–1465. doi:10.1002/jnr.23429

    Article  CAS  PubMed  Google Scholar 

  106. Liu CY, Kaufman RJ (2003) The unfolded protein response. J Cell Sci 116(10):1861–1862

    Article  CAS  PubMed  Google Scholar 

  107. Zhang K, Kaufman RJ (2006) The unfolded protein response A stress signaling pathway critical for health and disease. Neurology 66(1 suppl 1):S102–S109

    Article  CAS  PubMed  Google Scholar 

  108. Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP (2010) Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4–CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci 30(50):16938–16948

    Article  CAS  PubMed  Google Scholar 

  109. Cregan SP, Arbour NA, MacLaurin JG, Callaghan SM, Fortin A, Cheung EC, Guberman DS, Park DS et al (2004) p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci 24(44):10003–10012

    Article  CAS  PubMed  Google Scholar 

  110. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis multiple pathways and activation of p53-up-regulated modulator of apoptosis (puma) and noxa by p53. J Biol Chem 281(11):7260–7270

    Article  CAS  PubMed  Google Scholar 

  111. Tashiro J, Kikuchi S, Shinpo K, Kishimoto R, Tsuji S, Sasaki H (2007) Role of p53 in neurotoxicity induced by the endoplasmic reticulum stress agent tunicamycin in organotypic slice cultures of rat spinal cord. J Neurosci Res 85(2):395–401

    Article  CAS  PubMed  Google Scholar 

  112. Price DL, Griffin J, Young A, Peck K, Stocks A (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188(4191):945–947

    Article  CAS  PubMed  Google Scholar 

  113. Manning K, Erichsen J, Evinger C (1990) Retrograde transneuronal transport properties of fragment C of tetanus toxin. Neuroscience 34(1):251–263

    Article  CAS  PubMed  Google Scholar 

  114. Pellizzari R, Rossetto O, Schiavo G, Montecucco C (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond Ser B Biol Sci 354(1381):259–268

    Article  CAS  Google Scholar 

  115. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80(2):717–766

    CAS  PubMed  Google Scholar 

  116. Deinhardt K, Berninghausen O, Willison HJ, Hopkins CR, Schiavo G (2006) Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174(3):459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Herrando‐Grabulosa M, Casas C, Aguilera J (2013) The C‐terminal domain of tetanus toxin protects motoneurons against acute excitotoxic damage on spinal cord organotypic cultures. J Neurochem 124(1):36–44

    Article  PubMed  CAS  Google Scholar 

  118. Labombarda F, Gonzalez S, Roig P, Lima A, Guennoun R, Schumacher M, De Nicola AF (2000) Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem MolBiol 73(3):159–169

    Article  CAS  Google Scholar 

  119. Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Guennoun R, Schumacher M, de Nicola AF (2002) Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 19(3):343–355

    Article  PubMed  Google Scholar 

  120. Labombarda F, Gonzalez S, Deniselle MCG, Garay L, Guennoun R, Schumacher M, Nicola AFD (2006) Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. J Neurotrauma 23(2):181–192

    Article  PubMed  Google Scholar 

  121. Labombarda F, González SL, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2009) Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury. Glia 57(8):884–897

    Article  PubMed  Google Scholar 

  122. Labombarda F, González S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2011) Progesterone attenuates astro-and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 231(1):135–146

    Article  CAS  PubMed  Google Scholar 

  123. Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, Kim H, Park S (2007) Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 148(1):148–159

    Article  CAS  PubMed  Google Scholar 

  124. Chung H, Seo S, Moon M, Park S (2008) Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen–glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol 198(3):511–521

    Article  CAS  PubMed  Google Scholar 

  125. Hwang S, Moon M, Kim S, Hwang L, Ahn KJ, Park S (2008) Neuroprotective effect of ghrelin is associated with decreased expression of prostate apoptosis response-4. Endocr J 56(4):609–617

    Article  Google Scholar 

  126. Moon M, Kim HG, Hwang L, Seo J-H, Kim S, Hwang S, Kim S, Lee D et al (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15(4):332–347

    Article  CAS  PubMed  Google Scholar 

  127. Delgado‐Rubín A, Chowen JA, Argente J, Frago LM (2009) Growth hormone‐releasing peptide 6 protection of hypothalamic neurons from glutamate excitotoxicity is caspase independent and not mediated by insulin‐like growth factor I. Eur J Neurosci 29(11):2115–2124

    Article  PubMed  Google Scholar 

  128. Lee J, Lim E, Kim Y, Li E, Park S (2010) Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. J Endocrinol 205(3):263–270

    Article  CAS  PubMed  Google Scholar 

  129. Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park S, Yune TY (2010) Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology 151(8):3815–3826

    Article  CAS  PubMed  Google Scholar 

  130. Vergnano AM, Ferrini F, Salio C, Lossi L, Baratta M, Merighi A (2008) The gastrointestinal hormone ghrelin modulates inhibitory neurotransmission in deep laminae of mouse spinal cord dorsal horn. Endocrinology 149(5):2306–2312

    Article  CAS  PubMed  Google Scholar 

  131. Lim E, Lee S, Li E, Kim Y, Park S (2011) Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways. Exp Neurol 230(1):114–122

    Article  CAS  PubMed  Google Scholar 

  132. Lee S, Kim Y, Li E, Park S (2012) Ghrelin protects spinal cord motoneurons against chronic glutamate excitotoxicity by inhibiting microglial activation. Korean J Physiol Pharmacol 16(1):43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rakowicz WP, Staples CS, Milbrandt J, Brunstrom JE, Johnson EM (2002) Glial cell line-derived neurotrophic factor promotes the survival of early postnatal spinal motor neurons in the lateral and medial motor columns in slice culture. J Neurosci 22(10):3953–3962

    CAS  PubMed  Google Scholar 

  134. Corse AM, Bilak MM, Bilak SR, Lehar M, Rothstein JD, Kuncl RW (1999) Preclinical testing of neuroprotective neurotrophic factors in a model of chronic motor neuron degeneration. Neurobiol Dis 6(5):335–346

    Article  CAS  PubMed  Google Scholar 

  135. Tsao MN, Li YQ, Lu G, Xu Y, Wong CS (1999) Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol 58(10):1051–1060

    Article  CAS  PubMed  Google Scholar 

  136. Sköld M, Cullheim S, Hammarberg H, Piehl F, Suneson A, Lake S, Sjögren A, Walum E et al (2000) Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur J Neurosci 12(10):3675–3686

    Article  PubMed  Google Scholar 

  137. Islamov RR, Chintalgattu V, Pak ES, Katwa LC, Murashov AK (2004) Induction of VEGF and its Flt-1 receptor after sciatic nerve crush injury. Neuroreport 15(13):2117–2121

    Article  CAS  PubMed  Google Scholar 

  138. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28(2):131–138

    Article  CAS  PubMed  Google Scholar 

  139. Bartholdi D, Rubin BP, Schwab ME (1997) VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur J Neurosci 9(12):2549–2560

    Article  CAS  PubMed  Google Scholar 

  140. Tolosa L, Mir M, Asensio VJ, Olmos G, Lladó J (2008) Vascular endothelial growth factor protects spinal cord motoneurons against glutamate‐induced excitotoxicity via phosphatidylinositol 3‐kinase. J Neurochem 105(4):1080–1090

    Article  CAS  PubMed  Google Scholar 

  141. Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12(1):139–153

    Article  CAS  PubMed  Google Scholar 

  142. Ghezzi P, Mennini T (2002) Tumor necrosis factor and motoneuronal degeneration: an open problem. Neuroimmunomodulation 9(4):178–182

    Article  Google Scholar 

  143. Yin HZ, Hsu C-I, Yu S, Rao SD, Sorkin LS, Weiss JH (2012) TNF-α triggers rapid membrane insertion of Ca 2+ permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury. Exp Neurol 238(2):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM (2004) The promise of minocycline in neurology. Lancet Neurol 3(12):744–751

    Article  PubMed  Google Scholar 

  145. Kim H-S, Suh Y-H (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196(2):168–179

    Article  CAS  PubMed  Google Scholar 

  146. Plane JM, Shen Y, Pleasure DE, Deng W (2010) Prospects for minocycline neuroprotection. Arch Neurol 67(12):1442–1448

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, Oh YJ, Markelonis GJ et al (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20(10):1017–1027

    Article  PubMed  Google Scholar 

  148. Diguet E, Fernagut PO, Wei X, Du Y, Rouland R, Gross C, Bezard E, Tison F (2004) Deleterious effects of minocycline in animal models of Parkinson's disease and Huntington's disease. Eur J Neurosci 19(12):3266–3276

    Article  PubMed  Google Scholar 

  149. Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, Kaneko Y, Ojika K et al (2009) Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci 10(1):126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Keller A, Gravel M, Kriz J (2011) Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp Neurol 228(1):69–79

    Article  CAS  PubMed  Google Scholar 

  151. Kupsch K, Hertel S, Kreutzmann P, Wolf G, Wallesch CW, Siemen D, Schönfeld P (2009) Impairment of mitochondrial function by minocycline. FEBS J 276(6):1729–1738

    Article  CAS  PubMed  Google Scholar 

  152. Keilhoff G, Langnaese K, Wolf G, Fansa H (2007) Inhibiting effect of minocycline on the regeneration of peripheral nerves. Dev Neurobiol 67(10):1382–1395

    Article  CAS  PubMed  Google Scholar 

  153. Pinkernelle J, Fansa H, Ebmeyer U, Keilhoff G (2013) Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One 8(8), e73422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sahni V, Kessler JA (2010) Stem cell therapies for spinal cord injury. Nat Rev Neurol 6(7):363–372

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ronaghi M, Erceg S, Moreno‐Manzano V, Stojkovic M (2010) Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 28(1):93–99

    PubMed  Google Scholar 

  156. Fehlings MG, Vawda R (2011) Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics 8(4):704–720

    Article  PubMed  PubMed Central  Google Scholar 

  157. Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A (2012) Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev 35(3):293–311

    Article  CAS  PubMed  Google Scholar 

  158. Kamei N, Oishi Y, Tanaka N, Ishida O, Fujiwara Y, Ochi M (2004) Neural progenitor cells promote corticospinal axon growth in organotypic co-cultures. Neuroreport 15(17):2579–2583

    Article  PubMed  Google Scholar 

  159. Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N, Ochi M (2007) BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine 32(12):1272–1278

    Article  PubMed  Google Scholar 

  160. Hamasaki T, Tanaka N, Kamei N, Ishida O, Yanada S, Nakanishi K, Nishida K, Oishi Y et al (2007) Magnetically labeled neural progenitor cells, which are localized by magnetic force, promote axon growth in organotypic cocultures. Spine 32(21):2300–2305

    Article  PubMed  Google Scholar 

  161. Park HW, Lim MJ, Jung H, Lee SP, Paik KS, Chang MS (2010) Human mesenchymal stem cell‐derived Schwann cell‐like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 58(9):1118–1132

    Article  PubMed  Google Scholar 

  162. Kim HM, Lee HJ, Lee MY, Kim SU, Kim BG (2010) Organotypic spinal cord slice culture to study neural stem/progenitor cell microenvironment in the injured spinal cord. Exp Neurobiol 19(2):106–113

    Article  PubMed  PubMed Central  Google Scholar 

  163. Sypecka J, Sarnowska A, Gadomska-Szabłowska I, Lukomska B, Domańska-Janik K (2013) Differentiation of glia-committed NG2 cells: the role of factors released from hippocampus and spinal cord. Acta Neurobiol Exp (Wars) 73(1):116–129

    Google Scholar 

  164. Riggio C, Nocentini S, Catalayud MP, Goya GF, Cuschieri A, Raffa V, del Río JA (2013) Generation of magnetized olfactory ensheathing cells for regenerative studies in the central and peripheral nervous tissue. Int J Mol Sci 14(6):10852–10868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Liu X, Chu T-H, Su H, Guo A, Wu W (2014) Neural progenitor cell apoptosis and differentiation were affected by activated microglia in spinal cord slice culture. Neurol Sci 35(3):415–419

    Article  PubMed  Google Scholar 

  166. Talac R, Friedman J, Moore M, Lu L, Jabbari E, Windebank A, Currier B, Yaszemski M (2004) Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials 25(9):1505–1510

    Article  CAS  PubMed  Google Scholar 

  167. Chen BK, Knight AM, Madigan NN, Gross L, Dadsetan M, Nesbitt JJ, Rooney GE, Currier BL et al (2011) Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair. Biomaterials 32(32):8077–8086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Weightman AP, Pickard MR, Yang Y, Chari DM (2014) An in vitro spinal cord injury model to screen neuroregenerative materials. Biomaterials 35(12):3756–3765. doi:10.1016/j.biomaterials.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  169. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci 99(5):3024–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25(27):5839–5846

    Article  CAS  PubMed  Google Scholar 

  171. Stokols S, Tuszynski MH (2006) Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27(3):443–451

    Article  CAS  PubMed  Google Scholar 

  172. Jain A, Kim Y-T, McKeon RJ, Bellamkonda RV (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27(3):497–504

    Article  CAS  PubMed  Google Scholar 

  173. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28(14):3814–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang M, Zhai P, Chen X, Schreyer DJ, Sun X, Cui F (2011) Bioengineered scaffolds for spinal cord repair. Tissue Eng B Rev 17(3):177–194

    Article  CAS  Google Scholar 

  175. Webber MJ, Kessler J, Stupp S (2010) Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 267(1):71–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Geller HM, Fawcett JW (2002) Building a bridge: engineering spinal cord repair. Exp Neurol 174(2):125–136

    Article  PubMed  Google Scholar 

  177. Schizas N, Rojas R, Kootala S, Andersson B, Pettersson J, Hilborn J, Hailer NP (2013) Hyaluronic acid-based hydrogel enhances neuronal survival in spinal cord slice cultures from postnatal mice. Journal of biomaterials applications:0885328213483636

  178. Aurand ER, Lampe KJ, Bjugstad KB (2012) Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci Res 72(3):199–213

    Article  CAS  PubMed  Google Scholar 

  179. Gerardo-Nava J, Hodde D, Katona I, Bozkurt A, Grehl T, Steinbusch HW, Weis J, Brook GA (2014) Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials 35(14):4288–4296

    Article  CAS  PubMed  Google Scholar 

  180. Dagberg B, Alstermark B (2006) Improved organotypic cell culture model for analysis of the neuronal circuit involved in the monosynaptic stretch reflex. J Neurosci Res 84(2):460–469

    Article  CAS  PubMed  Google Scholar 

  181. Bonnici B, Kapfhammer JP (2008) Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model. Eur J Neurosci 27(10):2483–2492

    Article  PubMed  Google Scholar 

  182. Sypecka J, Koniusz S, Kawalec M, Sarnowska A. The organotypic longitudinal spinal cord slice culture for stem cell study.

  183. Mladinic M, Nistri A (2013) Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. Front Neuroengineer 6

  184. Heidemann M, Streit J, Tscherter A (2014) Functional regeneration of intraspinal connections in a new in vitro model. Neuroscience 262:40–52. doi:10.1016/j.neuroscience.2013.12.051

    Article  CAS  PubMed  Google Scholar 

  185. Siddique R, Vyas A, Thakor N, Brushart TM (2014) A two-compartment organotypic model of mammalian peripheral nerve repair. J Neurosci Methods 232:84–92

    Article  PubMed  PubMed Central  Google Scholar 

  186. Glazova MV, Pak ES, Murashov AK (2015) Neurogenic potential of spinal cord organotypic culture. Neuroscience letters

Download references

Acknowledgments

The authors are thankful to the Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, for the financial support of this work. Also they would like to thank Abdolaziz Ronaghi and Mohammad Saied Salehi for their comments and suggestions.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Dargahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandamooz, S., Nabiuni, M., Miyan, J. et al. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening. Mol Neurobiol 53, 4659–4674 (2016). https://doi.org/10.1007/s12035-015-9403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9403-z

Keywords

Navigation