Skip to main content

Advertisement

Log in

P2C-Type ATPases and Their Regulation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

P2C-type ATPases are a subfamily of P-type ATPases comprising Na+/K+-ATPase and H+/K+-ATPase. Na+/K+-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H+/K+-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na+/K+-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na+/K+-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer’s disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na+/K+-ATPase inhibitor, but and high concentrations of lithium could affect negatively H+/K+-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Köksoy AA (2002) Na, K-ATPase: a review. J ANKARA Med Sch 24:73–82

    Google Scholar 

  2. Sweadner KJ, Donnet C (2001) Structural similarities of Na, K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum. Biochem J 356:685–704

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Abe K, Tani K, Friedrich T, Fujiyoshi Y (2012) Cryo-EM structure of gastric H+, K+-ATPase with a single occupied cation-binding site. Proc Natl Acad Sci U S A 109:18401–18406. doi:10.1073/pnas.1212294109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Nyblom M, Poulsen H, Gourdon P et al (2013) Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science 342:123–127. doi:10.1126/science.1243352

    Article  PubMed  CAS  Google Scholar 

  5. Li J, Codina J, Petroske E et al (2004) The carboxy terminus of the colonic H(+), K(+)-ATPase alpha-subunit is required for stable beta subunit assembly and function. Kidney Int 65:1301–1310. doi:10.1111/j.1523-1755.2004.00507.x

    Article  PubMed  CAS  Google Scholar 

  6. Toustrup-Jensen MS, Holm R, Einholm AP et al (2009) The C terminus of Na+, K+-ATPase controls Na+ affinity on both sides of the membrane through Arg935. J Biol Chem 284:18715–18725. doi:10.1074/jbc.M109.015099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Mishra NK, Peleg Y, Cirri E et al (2011) FXYD proteins stabilize Na, K-ATPase: amplification of specific phosphatidylserine-protein interactions. J Biol Chem 286:9699–9712. doi:10.1074/jbc.M110.184234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Hall K, Perez G, Sachs G, Rabon E (1991) Identification of H+/K(+)-ATPase alpha, beta-heterodimers. Biochim Biophys Acta 1077:173–179

    Article  PubMed  CAS  Google Scholar 

  9. Chiampanichayakul S, Szekeres A, Khunkaewla P et al (2002) Engagement of Na, K-ATPase beta3 subunit by a specific mAb suppresses T and B lymphocyte activation. Int Immunol 14:1407–1414

    Article  PubMed  CAS  Google Scholar 

  10. Ray T (2013) The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states. F1000 Res 2:165–175. doi:10.12688/f1000research.2-165.v2

    CAS  Google Scholar 

  11. Shin JM, Munson K, Sachs G (2011) Gastric H+, K+-ATPase. Compr Physiol 1:2141–2153. doi:10.1002/cphy.c110010

    PubMed  Google Scholar 

  12. Shin JM, Munson K, Vagin O, Sachs G (2009) The gastric HK-ATPase: structure, function, and inhibition. Pflugers Arch 457:609–622. doi:10.1007/s00424-008-0495-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Al-Khalili L, Kotova O, Tsuchida H et al (2004) ERK1/2 mediates insulin stimulation of Na(+), K(+)-ATPase by phosphorylation of the alpha-subunit in human skeletal muscle cells. J Biol Chem 279:25211–25218. doi:10.1074/jbc.M402152200

    Article  PubMed  CAS  Google Scholar 

  14. Cornelius F, Mahmmoud YA (2003) Direct activation of gastric H, K-ATPase by N-terminal protein kinase C phosphorylation. Comparison of the acute regulation mechanisms of H, K-ATPase and Na, K-ATPase. Biophys J 84:1690–1700. doi:10.1016/S0006-3495(03)74977-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Poulsen H, Morth P, Egebjerg J, Nissen P (2010) Phosphorylation of the Na+, K+−ATPase and the H+, K+−ATPase. FEBS Lett 584:2589–2595. doi:10.1016/j.febslet.2010.04.035

    Article  PubMed  CAS  Google Scholar 

  16. Mahmmoud YA, Cornelius F (2003) PKA and PKC phosphorylation of gastric H, K-ATPase. Ann N Y Acad Sci 986:548–549

    Article  PubMed  Google Scholar 

  17. Frindt G, Palmer LG (2012) Effects of insulin on Na and K transporters in the rat CCD. Am J Physiol Renal Physiol 302:F1227–F1233. doi:10.1152/ajprenal.00675.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Aperia A (2007) New roles for an old enzyme: Na, K-ATPase emerges as an interesting drug target. J Intern Med 261:44–52. doi:10.1111/j.1365-2796.2006.01745.x

    Article  PubMed  CAS  Google Scholar 

  19. Xie JX, Li X, Xie Z (2013) Regulation of renal function and structure by the signaling Na/K-ATPase. IUBMB Life 65:991–998. doi:10.1002/iub.1229

    Article  PubMed  CAS  Google Scholar 

  20. Lingrel JB, Orlowski J, Shull MM, Price EM (1990) Molecular genetics of Na, K-ATPase. Prog Nucleic Acid Res Mol Biol 38:37–89

    Article  PubMed  CAS  Google Scholar 

  21. Wang H-YL, O’Doherty GA (2012) Modulators of Na/K-ATPase: a patent review. Expert Opin Ther Pat 22:587–605. doi:10.1517/13543776.2012.690033

    Article  PubMed  CAS  Google Scholar 

  22. Li H, Meng L, Liu F et al (2013) H+/K+−ATPase inhibitors: a patent review. Expert Opin Ther Pat 23:99–111. doi:10.1517/13543776.2013.741121

    Article  PubMed  CAS  Google Scholar 

  23. Beaugé L (1978) Activation by lithium ions of the inside sodium sites in Na, K-ATPase. Niochimica Biophys Acta 527:472–484

    Article  Google Scholar 

  24. Dafnis E, Kurtzman NA, Sabatini S (1993) H-K-ATPase in distal renal tubular acidosis: urinary tract obstruction, lithium, and amiloride. Am J Physiol 265:F875–F880

    PubMed  Google Scholar 

  25. Crowson MS, Shull GE (1992) Isolation and characterization of a cDNA encoding the putative distal colon H+, K(+)-ATPase. Similarity of deduced amino acid sequence to gastric H+, K(+)-ATPase and Na+, K(+)-ATPase and mRNA expression in distal colon, kidney, and uterus. J Biol Chem 267:13740–13748

    PubMed  CAS  Google Scholar 

  26. Horisberger JD, Lemas V, Kraehenbühl JP, Rossier BC (1991) Structure-function relationship of Na, K-ATPase. Annu Rev Physiol 53:565–584. doi:10.1146/annurev.ph.53.030191.003025

    Article  PubMed  CAS  Google Scholar 

  27. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535. doi:10.1146/annurev.biochem.71.102201.141218

    Article  PubMed  CAS  Google Scholar 

  28. Apell H-J (2004) How do P-type ATPases transport ions? Bioelectrochemistry 63:149–156. doi:10.1016/j.bioelechem.2003.09.021

    Article  PubMed  CAS  Google Scholar 

  29. Herrera VL, Emanuel JR, Ruiz-Opazo N et al (1987) Three differentially expressed Na, K-ATPase alpha subunit isoforms: structural and functional implications. J Cell Biol 105:1855–1865

    Article  PubMed  CAS  Google Scholar 

  30. Woo AL, James PF, Lingrel JB (1999) Characterization of the Fourth alpha Isoform of the Na, K-ATPase. J Membr Biol 169:39–44

    Article  PubMed  CAS  Google Scholar 

  31. McDermott JP, Sánchez G, Chennathukuzhi V, Blanco G (2012) Green fluorescence protein driven by the Na, K-ATPase α4 isoform promoter is expressed only in male germ cells of mouse testis. J Assist Reprod Genet 29:1313–1325. doi:10.1007/s10815-012-9876-x

    Article  PubMed Central  PubMed  Google Scholar 

  32. Jimenez T, Sánchez G, Wertheimer E, Blanco G (2010) Activity of the Na, K-ATPase alpha4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction 139:835–845. doi:10.1530/REP-09-0495

    Article  PubMed  CAS  Google Scholar 

  33. Jimenez T, Mcdermott JP, Sánchez G, Blanco G (2010) Na, K-ATPase α4 isoform is essential for sperm fertility. Proc Natl Acad Sci U S A 108:644–649. doi:10.1073/pnas.1016902108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1016902108

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lingrel JB, Williams MT, Vorhees CV, Moseley AE (2007) Na, K-ATPase and the role of alpha isoforms in behavior. J Bioenerg Biomembr 39:385–389. doi:10.1007/s10863-007-9107-9

    Article  PubMed  CAS  Google Scholar 

  35. Kirshenbaum GS, Clapcote SJ, Duffy S et al (2011) Mania-like behavior induced by genetic dysfunction of the neuron-specific Na, K-ATPase α3 sodium pump. Proc Natl Acad Sci U S A 108:18144–188149. doi:10.1073/pnas.1108416108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1108416108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Edwards IJ, Bruce G, Lawrenson C et al (2013) Na+/K+ ATPase α1 and α3 isoforms are differentially expressed in α- and γ-motoneurons. J Neurosci 33:9913–9919. doi:10.1523/JNEUROSCI. 5584-12.2013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Despa S, Lingrel JB, Bers DM (2012) Na(+)/K)+)-ATPase α2-isoform preferentially modulates Ca2(+) transients and sarcoplasmic reticulum Ca2(+) release in cardiac myocytes. Cardiovasc Res 95:480–486. doi:10.1093/cvr/cvs213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Clifford RJ, Kaplan JH (2008) B-Subunit overexpression alters the stoicheometry of assembled Na-K-ATPase subunits in MDCK cells. Am J Physiol Ren Physiol 295:1314–1323. doi:10.1152/ajprenal.90406.2008

    Article  CAS  Google Scholar 

  39. Chow DARC, Forte JG (1995) Functional significance of the beta subunit for heterodimeric P-type ATPases. J Exp Biol 198:1–17

    PubMed  CAS  Google Scholar 

  40. McDonough AA, Geering K, Farley RA (1990) The sodium pump needs its beta subunit. FASEB J 4:1598–1605

    PubMed  CAS  Google Scholar 

  41. Vagin O, Sachs G, Tokhtaeva E (2007) The roles of the Na, K-ATPase beta 1 subunit in pump sorting and epithelial integrity. J Bioenerg Biomembr 39:367–372. doi:10.1007/s10863-007-9103-0

    Article  PubMed  CAS  Google Scholar 

  42. Sun MZ, Kim JM, Oh MC et al (2013) Na+/K+-ATPase β2-subunit (AMOG) expression abrogates invasion of glioblastoma-derived brain tumor-initiating cells. Neuro Oncol 15:1518–1531. doi:10.1093/neuonc/not099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Peng L, Martin-Vasallo P, Sweadner KJ (1997) Isoforms of Na, K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J Neurosci 17:3488–3502

    PubMed  CAS  Google Scholar 

  44. Azarias G, Kruusmägi M, Connor S et al (2013) A specific and essential role for Na, K-ATPase α3 in neurons co-expressing α1 and α3. J Biol Chem 288:2734–2743. doi:10.1074/jbc.M112.425785

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Moseley AE, Williams MT, Schaefer TL et al (2007) Deficiency in Na, K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci 27:616–626. doi:10.1523/JNEUROSCI. 4464-06.2007

    Article  PubMed  CAS  Google Scholar 

  46. Geering K (2005) Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenerg Biomembr 37:387–392. doi:10.1007/s10863-005-9476-x

    Article  PubMed  CAS  Google Scholar 

  47. Mijatovic T, Ingrassia L, Facchini V, Kiss R (2008) Na+/K+−ATPase alpha subunits as new targets in anticancer therapy. Expert Opin Ther Targets 12:1403–1417. doi:10.1517/14728222.12.11.1403

    Article  PubMed  CAS  Google Scholar 

  48. Salhi A, Lamouroux C, Pestov NB et al (2013) A link between fertility and K+ homeostasis: role of the renal H, K-ATPase type 2. Pflugers Arch 465:1149–1158. doi:10.1007/s00424-013-1252-x

    Article  PubMed  CAS  Google Scholar 

  49. Streif D, Iglseder E, Hauser-kronberger C et al (2011) Expression of the non-gastric H+/K+−ATPase ATP12A in normal and pathological human prostate tissue. Cell Physiol Biochem 28:1287–1294

    Article  PubMed  CAS  Google Scholar 

  50. Cougnon M, Bouyer P, Planelles G, Jaisser F (1998) Does the colonic H, K-ATPase also act as an Na, K-ATPase? Proc Natl Acad Sci U S A 95:6516–6520

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Codina J (1999) The colonic H+, K+-ATPase functions as a Na+-dependent K+(NH4+)-ATPase in apical membranes from rat distal colon. J Biol Chem 274:19693–19698. doi:10.1074/jbc.274.28.19693

    Article  PubMed  CAS  Google Scholar 

  52. Gumz ML, Lynch IJ, Greenlee MM et al (2010) The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Ren Physiol 298:12–21. doi:10.1152/ajprenal.90723.2008

    Article  CAS  Google Scholar 

  53. Zies DL, Gumz ML, Wingo CS, Cain BD (2007) The renal H+, K+-ATPases as therapeutic targets. Expert Opin Ther Targets 11:881–890. doi:10.1517/14728222.11.7.881

    Article  PubMed  CAS  Google Scholar 

  54. Fryklund J, Wallmark B, Larsson H, Helander HF (1984) Effect of omeprazole on gastric secretion in H+, K+-ATPase and in pepsinogen-rich cell fractions from rabbit gastric mucosa. Biochem Pharmacol 33:273–280

    Article  PubMed  CAS  Google Scholar 

  55. Belisario DC, Rocafull MA, del Castillo JR (2010) Purification and characterization of the ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon. Arch Biochem Biophys 496:21–32. doi:10.1016/j.abb.2010.01.014

    Article  PubMed  CAS  Google Scholar 

  56. Codina J (1998) The alpha subunit of the colonic H+, K+-ATPase assembles with beta 1-Na+, K+-ATPase in kidney and distal colon. J Biol Chem 273:7894–7899. doi:10.1074/jbc.273.14.7894

    Article  PubMed  CAS  Google Scholar 

  57. Bamford M (2009) 3H+/K+ ATPase inhibitors in the treatment of acid-related disorders. Prog Med Chem 47:75–162. doi:10.1016/S0079-6468(08)00203-8

    Article  PubMed  CAS  Google Scholar 

  58. Yatime L, Buch-Pedersen MJ, Musgaard M et al (2009) P-type ATPases as drug targets: tools for medicine and science. Biochim Biophys Acta Bioenerg 1787:207–220. doi:10.1016/j.bbabio.2008.12.019

    Article  CAS  Google Scholar 

  59. Rajendran VM (2000) Ouabain-sensitive H, K-ATPase functions as Na, K-ATPase in apical membranes of rat distal colon. J Biol Chem 275:13035–13040. doi:10.1074/jbc.275.17.13035

    Article  PubMed  CAS  Google Scholar 

  60. Sangan P, Thevananther S, Sangan S et al (2000) Colonic H-K-ATPase alpha- and beta-subunits express ouabain-insensitive H-K-ATPase. Am J Physiol Cell Physiol 278:C182–C189

    PubMed  CAS  Google Scholar 

  61. Bhattacharyya D, Sen PC (1999) The effect of binding of chlorpromazine and chloroquine to ion transporting ATPases. Mol Cell Biochem 198:179–185

    Article  PubMed  CAS  Google Scholar 

  62. Gupta SP (2012) Quantitative structure-activity relationship studies on Na+, K(+)-ATPase inhibitors. Chem Rev 112:3171–3192. doi:10.1021/cr200097p

    Article  PubMed  CAS  Google Scholar 

  63. Sandtner W, Egwolf B, Khalili-Araghi F et al (2011) Ouabain binding site in a functioning Na+/K+ ATPase. J Biol Chem 286:38177–38183. doi:10.1074/jbc.M111.267682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Yu SP (2003) Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609. doi:10.1016/S0006-2952(03)00531-8

    Article  PubMed  CAS  Google Scholar 

  65. Goldstein I, Levy T, Galili D et al (2006) Involvement of Na(+), K(+)-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatr 60:491–499. doi:10.1016/j.biopsych.2005.12.021

    Article  CAS  Google Scholar 

  66. Herman L, Hougland T, El-Mallakh RS (2007) Mimicking human bipolar ion dysregulation models mania in rats. Neurosci Biobehav Rev 31:874–881. doi:10.1016/j.neubiorev.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  67. Rosta K, Tulassay E, Enzsoly A et al (2009) Insulin induced translocation of Na+/K+-ATPase is decreased in the heart of streptozotocin diabetic rats. Acta Pharmacol Sin 30:1616–1624. doi:10.1038/aps.2009.162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Oubaassine R, Weckering M, Kessler L et al (2012) Insulin interacts directly with Na+/K+ATPase and protects from digoxin toxicity. Toxicology 299:1–9. doi:10.1016/j.tox.2012.04.013

    Article  PubMed  CAS  Google Scholar 

  69. Haritha C, Reddy AG, Reddy YR et al (2013) Evaluation of protective action of fenugreek, insulin and glimepiride and their combination in diabetic Sprague Dawley rats. J Nat Sci Biol Med 4:207–212. doi:10.4103/0976-9668.107292

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Liu J, Feng L, Zhang M et al (2013) Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. J Ethnopharmacol 150:371–381. doi:10.1016/j.jep.2013.09.003

    Article  PubMed  Google Scholar 

  71. Hennion JP, el-Masri MA, Huff MO, el-Mailakh RS (2002) Evaluation of neuroprotection by lithium and valproic acid against ouabain-induced cell damage. Bipolar Disord 4:201–206

    Article  PubMed  CAS  Google Scholar 

  72. El-Mallakh RS, Schurr A, Payne RS, Li R (2000) Ouabain induction of cycling of multiple spike responses in hippocampal slices is delayed by lithium. J Psychiatr Res 34:115–120

    Article  PubMed  CAS  Google Scholar 

  73. Banerjee U, Dasgupta A, Rout JK, Singh OP (2012) Effects of lithium therapy on Na+−K+-ATPase activity and lipid peroxidation in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatr 37:56–61. doi:10.1016/j.pnpbp.2011.12.006

    Article  CAS  Google Scholar 

  74. De Vasconcellos APS, Zugno AI, Dos Santos AHDP et al (2005) Na+, K(+)-ATPase activity is reduced in hippocampus of rats submitted to an experimental model of depression: effect of chronic lithium treatment and possible involvement in learning deficits. Neurobiol Learn Mem 84:102–110. doi:10.1016/j.nlm.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  75. McKnight RF, Adida M, Budge K et al (2012) Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379:721–728. doi:10.1016/S0140-6736(11)61516-X

    Article  PubMed  CAS  Google Scholar 

  76. Wu JY, Wadhwa N (2013) Case 192: lithium-induced nephropathy. Radiology 267:308–312. doi:10.1148/radiol.13111801

    Article  PubMed  Google Scholar 

  77. Rej S, Looper K, Segal M (2013) The effect of serum lithium levels on renal function in geriatric outpatients: a retrospective longitudinal study. Drugs Aging 30:409–415. doi:10.1007/s40266-013-0068-x

    Article  PubMed  CAS  Google Scholar 

  78. Andrade Nunes M, Araujo Viel T, Sousa Buck H (2013) Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr Alzheimer Res 10:104–107. doi:10.2174/156720513804871354

    Google Scholar 

  79. Nunes PV, Forlenza OV, Gattaz WF (2007) Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiatry 190:359–360. doi:10.1192/bjp.bp.106.029868

    Article  PubMed  Google Scholar 

  80. Goldstein I, Lerer E, Laiba E et al (2009) Association between sodium- and potassium-activated adenosine triphosphatase alpha isoforms and bipolar disorders. Biol Psychiatry 65:985–991. doi:10.1016/j.biopsych.2008.10.033

    Article  PubMed  CAS  Google Scholar 

  81. Bøttger P, Doğanlı C, Lykke-Hartmann K (2012) Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 36:855–871. doi:10.1016/j.neubiorev.2011.10.005

    Article  PubMed  CAS  Google Scholar 

  82. Gritz SM, Radcliffe RA (2013) Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models. Hum Genom 7:8. doi:10.1186/1479-7364-7-8

    Article  CAS  Google Scholar 

  83. Heinzen EL, Arzimanoglou A, Brashear A et al (2014) Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 13:503–514. doi:10.1016/S1474-4422(14)70011-0

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. De Carvalho AP, Sweadner KJ, Penniston JT et al (2004) Mutations in the Na+/K+-ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43:169–175. doi:10.1016/j.neuron.2004.06.028

    Article  Google Scholar 

  85. Brashear A, Mink JW, Hill DF et al (2012) ATP1A3 mutations in infants: a new rapid-onset dystonia-Parkinsonism phenotype characterized by motor delay and ataxia. Dev Med Child Neurol 54:1065–1067. doi:10.1111/j.1469-8749.2012.04421.x

    Article  PubMed Central  PubMed  Google Scholar 

  86. Einholm AP, Toustrup-Jensen MS, Holm R et al (2010) The rapid-onset dystonia parkinsonism mutation D923N of the Na+, K+-ATPase alpha3 isoform disrupts Na+ interaction at the third Na+ site. J Biol Chem 285:26245–26254. doi:10.1074/jbc.M110.123976

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Heinzen EL, Swoboda KJ, Hitomi Y et al (2012) De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet 44:1030–1034. doi:10.1038/ng.2358

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Hattori N, Kitagawa K, Higashida T et al (1998) Cl-ATPase and Na, K-ATPase activities in Alzheimer’s disease brains. Neurosci Lett 254:141–144

    Article  PubMed  CAS  Google Scholar 

  89. Toustrup-Jensen MS, Einholm AP, Schack VR et al (2013) Relationship between intracellular Na+ concentration and reduced Na+ affinity in Na+, K+-ATPase mutants causing neurological disease. J Biol Chem. doi:10.1074/jbc.M113.543272

    PubMed Central  PubMed  Google Scholar 

  90. Silveira PP, Portella AK, Benetti CDS et al (2011) Association between Na+, K+-ATPase activity and the vulnerability/resilience to mood disorders induced by early life experience. Neurochem Res 36:2075–2082. doi:10.1007/s11064-011-0531-1

    Article  PubMed  CAS  Google Scholar 

  91. Kirshenbaum GS, Clapcote SJ, Petersen J et al (2012) Genetic suppression of agrin reduces mania-like behavior in Na+, K+−ATPase α3 mutant mice. Genes Brain Behav 11:436–443. doi:10.1111/j.1601-183X.2012.00800.x

    Article  PubMed  CAS  Google Scholar 

  92. Harik SI, Mitchell MJ, Kalaria RN (1989) Ouabain binding in the human brain. Effects of Alzheimer’s disease and aging. Arch Neurol 46:951–954

    Article  PubMed  CAS  Google Scholar 

  93. Mark J, Allan D, Mattson P (1995) Amyloid P-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 15:6239–6249

    PubMed  CAS  Google Scholar 

  94. Kairane C, Mahlapuu R, Ehrlich K et al (2014) The effects of different antioxidants on the activity of cerebrocortical MnSOD and Na, K-ATPase from post mortem Alzheimer’s disease and age-matched normal brains. Curr Alzheimer Res 11:79–85. doi:10.2174/15672050113106660179

    Article  PubMed  CAS  Google Scholar 

  95. Wilson M-MG, Morley JE (2003) Invited review: aging and energy balance. J Appl Physiol 95:1728–1736. doi:10.1152/japplphysiol.00313.2003

    Article  PubMed  CAS  Google Scholar 

  96. Gu QB, Zhao JX, Fei J, Schwarz W (2004) Modulation of Na(+), K(+) pumping and neurotransmitter uptake by beta-amyloid. Neuroscience 126:61–67. doi:10.1016/j.neuroscience.2004.03.022

    Article  PubMed  CAS  Google Scholar 

  97. Dickey CA, Gordon MN, Wilcock DM et al (2005) Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice. BMC Neurosci 6:7. doi:10.1186/1471-2202-6-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Zhang L-N, Sun Y-J, Pan S et al (2013) Na+-K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundam Clin Pharmacol 27:96–103. doi:10.1111/fcp.12000

    Article  PubMed  CAS  Google Scholar 

  99. Kreutz F, Scherer EB, Ferreira AGK et al (2013) Alterations on Na+, K+-ATPase and acetylcholinesterase activities induced by amyloid-β peptide in rat brain and GM1 ganglioside neuroprotective action. Neurochem Res 38:2342–2350. doi:10.1007/s11064-013-1145-6

    Article  PubMed  CAS  Google Scholar 

  100. Eiam-ong S, Jerawatana R, Kittikowit W, Mannontarat R (2009) Effects of vanadate and potassium depletion on renal H. K-ATPase Protein Expr 3:517–523

    CAS  Google Scholar 

  101. Codina J, Delmas-Mata JT, DuBose TD (1998) Expression of HKalpha2 protein is increased selectively in renal medulla by chronic hypokalemia. Am J Physiol 275:F433–F440

    PubMed  CAS  Google Scholar 

  102. Izumi Y, Hori K, Nakayama Y et al (2011) Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid–base homeostasis. J Am Soc Nephrol 22:673–680. doi:10.1681/ASN.2010050468

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Salhi A, Centeno G, Firsov D, Crambert G (2012) Circadian expression of H, K-ATPase type 2 contributes to the stability of plasma K+ levels. FASEB J 26:2859–2867. doi:10.1096/fj.11-199711

    Article  PubMed  CAS  Google Scholar 

  104. Maeda Y, Kojima N, Araki Y et al (2011) Does a proton pump inhibitor cause hypokalemia? Intern Med 50:1045–1050. doi:10.2169/internalmedicine.50.4877

    Article  PubMed  CAS  Google Scholar 

  105. Vío CP, Figueroa CD (1987) Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney Int 31:1327–1334

    Article  PubMed  Google Scholar 

  106. Vío CP, Figueroa CD (1985) Subcellular localization of renal kallikrein by ultrastructural immunocytochemistry. Kidney Int 28:36–42

    Article  PubMed  Google Scholar 

  107. Valdés G, Vio CP, Montero J, Avendaño R (1991) Potassium supplementation lowers blood pressure and increases urinary kallikrein in essential hypertensives. J Hum Hypertens 5:91–96

    PubMed  Google Scholar 

  108. Suga SI, Phillips MI, Ray PE et al (2001) Hypokalemia induces renal injury and alterations in vasoactive mediators that favor salt sensitivity. Am J Physiol Renal Physiol 281:F620–F629

    PubMed  CAS  Google Scholar 

  109. He FJ, MacGregor GA (2001) Fortnightly review: beneficial effects of potassium. BMJ 323:497–501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Aburto NJ, Hanson S, Gutierrez H et al (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346:f1378. doi:10.1136/bmj.f1378

    Article  PubMed  Google Scholar 

  111. McDonough AA, Nguyen MTX (2012) How does potassium supplementation lower blood pressure? Am J Physiol Renal Physiol 302:F1224–F1225. doi:10.1152/ajprenal.00429.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Ogiyama Y, Miura T, Watanabe S, et al (2013) Circadian rhythm of urinary potassium excretion during treatment with an angiotensin receptor blocker. J Renin Angiotensin Aldosterone Syst:1–6. doi: 10.1177/1470320313475909

Download references

Acknowledgments

This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration (CONICYT-PFB 12/2007) to NCI and CV, FONDECYT No. 1120156 to NCI and FONDECYT No. 1130741. Rocío Retamales-Ortega was a SQM associate researcher.

We thank the Sociedad Química y Minera de Chile (SQM) for grants on the “Role of Potassium in Hypertension and Cognition” and on “The Effect of Lithium on Human Health” to the CARE Biomedical Center.

Graphic work was carried out using Graphique-Science (http://graphiquescience.blogspot.com). We thank Felipe Serrano for his help with the drawing of our figures.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaldo C. Inestrosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retamales-Ortega, R., Vio, C.P. & Inestrosa, N.C. P2C-Type ATPases and Their Regulation. Mol Neurobiol 53, 1343–1354 (2016). https://doi.org/10.1007/s12035-014-9076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9076-z

Keywords

Navigation